

Civils Design Report

for

Residential Development

at

Ballymount Road Lower, Walkinstown, Dublin 12

Job No: Architect: Date: Local Authority: Pre Planning Revision: D1752 Meitheal Architects April 2024 South Dublin County Council LRDPP0118/23 PL1

Ulick Burke & Associates Limited T/A KavanaghBurke Company No: 233579 VAT No: IE 82335791 Director: P.Kavanagh

F3 Calmount Park, Ballymount, Dublin 12

Tel: 01 450 0694

www.kavanaghburke.ie

Introduction

Description of Development:

This civils design report has been prepared to accompany a planning application for a development in Ballymount Road Lower, Walkinstown, Dublin 12. This application is a revision to a previously approved planning permission Reg Ref SHD3ABP-309658-21 which is currently under construction. The proposed revisions have a minimal impact on the surface water, wastewater and watermain designs previously granted.

Surface Water Drainage:

The proposed revisions have a minimal impact on the surface water drainage layout and design previously approved under planning Reg Ref. SHD3ABP-309658-21. Appendix 1 of this document contains compliance documents, including drawings and calculations, relating to condition 11 of the granted planning which relates to "Water supply and drainage arrangements...". SDCC have confirmed "Partial Compliance" in a letter dated 20-02-2023. The outstanding issue relating to this condition is relating to a stage 3 surface water audit which can't be undertaken until the project is completed.

Foul Sewer:

The proposed revisions have a minimal impact on the wastewater drainage layout and design previously approved under planning Reg Ref. SHD3ABP-309658-21. Appendix 2 of this document contains a signed copy of the Uisce Éireann connection agreement for the development Ref. CDS1900177002 and a copy of the payment receipt also.

Watermain:

The proposed revisions have a minimal impact on the watermain layout and design previously approved under planning Reg Ref. SHD3ABP-309658-21. Appendix 2 of this document contains a signed copy of the Uisce Éireann connection agreement for the development Ref. CDS1900177002 and a copy of the payment receipt also.

<u>Appendix 1</u>

Previously Approved Surface Water Drawings & Design

Connecting You to

Meitheal Architects 44, Northumberland Road Dublin 4

Date : 20-Feb-2023

Reg. Ref.	:
Proposal	:

SHD3ABP-309658-21C11

Demolition of an existing warehouse/factory building and ancillary outbuildings/structures and the construction of a residential development of 171 apartments with supporting tenant amenity facilities (gym, lounges and meeting room), café, creche, landscaping, public realm improvements, and all ancillary site development works. The proposed development will consist of 2 x studio apartments, 59 x 1bedroom apartments, 103 x 2-bedroom apartments and 7 x **3-bedroom apartments contained in two apartment blocks** ranging in height from 1 to 8 storeys. The proposed development provides for outdoor amenity areas, landscaping, under-podium car parking, bicycle racks, bin stores, ancillary plant, and roof mounted solar panels. Vehicular access to the proposed development will be provided via a relocated entrance from Ballymount Road Lower. Any person may, within the period of 5 weeks beginning on the date of receipt by An Bord Pleanála of the application and on payment of the prescribed fee of €20 (except for certain prescribed bodies), make a submission or observations in writing to An Bord Pleanála, 64 Marlborough Street, Dublin 1 or online at www.pleanala.ie. Any enquiries relating to the application process should be directed to the Strategic Housing Development Section of An Bord Pleanála (Tel. 01-8588100).

Condition 11; Water supply and drainage arrangements, including the attenuation and disposal of surface water, shall comply with the requirements of the planning authority for such works and services. Prior to commencement of development the developer shall submit the following details to the Planning Authority for written agreement: a) Revised surface water drainage calculations, conveyance and attenuation details (to include SUDS details and details of flow control device) to meet the surface water

Comhairle Contae Átha Cliath Theas, Halla an Contae, Tamhlacht, Átha Cliath 24. South Dublin County Council, County Hall, Tallaght, Dublin 24. Tel: +353 1 414 9000 SMS: 086 173 1707 Email: info@sdublincoco.ie Ceangail 24/7 Connect 24/7 with Council information and services at www.southdublin.ie

storage requirements of the development. The maximum discharge rate for the surface water shall be Qbar rural or c. 2 litres per second. b) Prior to commencement of the development a Stage 2-**Detailied Design Stage** Stormwater Audit shall be submitted to the Planning Authority for written agreement. c) Upon Completion of the development, a Stage 3 – **Completion Stormwater Audit to** demonstrate Sustainable Urban Drainage System measures have been installed and are working as designed and that there has been no misconnections or damage to the storm water drainage infrastructure during construction, shall be submitted to the planning authority for written agreement. Location : CHM Premises, Ballymount Road Lower, Walkinstown, **Dublin 12 Applicant :** Greg McGinn, AAI Walkinstown Ltd. **Application Type: Compliance with Conditions**

Dear Sir/Madam,

I refer to your submission received on 16-Dec-2022 to comply with Condition No 11 of Grant of Permission Order No. shd3abp-309658-21, in connection with the above.

In this regard I wish to inform you that the submission received is deemed partially compliant.

Comments:

"Assessment:

The applicant has submitted drawings and documents as required under condition No.11 in relation to water and drainage on the subject site. The compliance documents were referred to the Water Services Section of the council who had the following comments:

Surface Water Report:

Compliance C11

Water services are satisfied that Condition C11 Part (i) and (ii) only of Planning reference SHD3ABP-309658-21 is being complied with.

Assessment:

The Water Services Section of the council considers the submitted information to be acceptable and compliant with the condition as set out through the grant of permission. Coinciding with this the planning department consider the submitted information is therefore in agreement with the compliance requirements.

It is noted that part (i) and (ii) of the condition is subject to this documentation and compliance submission and is in compliance as stated by Water Services and part (iii) will be reviewed once the appropriate documentation has been received on completion of the construction of the development.

Recommendation:

It is therefore considered that this submission is **partial compliance** with the condition. The applicant should implement the Water and Drainage as identified by the drawings and documents and submit documents in support of part (iii) of the condition in due course.

Conclusion:

Having regard to the information submitted and the requirements laid out in Condition No.11, the Planning Authority consider that Condition No. 11 is Partially Compliant."

Yours faithfully,

M.C.

for Senior Planner

Planning Department South Dublin County Council, County Hall, Tallaght, Dublin 24, D24 A3XC.

Re: <u>Planning Compliance for SHD Planning Application Ref. ABP-309658-21 for Residential</u> <u>Development at Former CHM Premises, Ballymount Road Lower, Walkinstown, Dublin</u> <u>12.</u>

Dear Sir/Madam,

Enclosed are documents relating to item 9 & 11 of the above planning permission relating to foul & surface water drainage and watermain.

Item 9:

The developer shall enter into water and wastewater connection agreements with Irish Water, prior to commencement of development Included with this document is a copy of the connection agreement from Irish Water.

Item 11:

Water supply and drainage arrangements, including the attenuation and disposal of surface water, shall comply with the requirements of the planning authority for such works and services. Prior to commencement of development the developer shall submit the following details to the Planning Authority for written agreement:

- a) Revised surface water drainage calculations, conveyance and attenuation details (to include SUDS details and details of flow control device) to meet the surface water storage requirements of the development. The maximum discharge rate for the surface water shall be Qbar rural or c. 2 litres per second. Included with this document are drawings and calculations showing details as required above. Please note that the maximum surface water discharge rate from the development is 2.0l/sec.
- b) Prior to commencement of the development a Stage 2-Detailied Design Stage Stormwater Audit shall be submitted to the Planning Authority for written agreement. Included with this document is a copy of a stage 2 stormwater audit completed by JBA Consulting
- c) Upon Completion of the development, a Stage 3 Completion Stormwater Audit to demonstrate Sustainable Urban Drainage System measures have been installed and are working as designed and that there has been no misconnections or damage to the storm water drainage infrastructure during construction, shall be submitted to the planning authority for written agreement. Noted

If you require any additional information do not hesitate to contact me.

Yours Sincerely,

Declar O' Solliva.

Declan O'Sullivan BSc(Eng)Dip(Eng)C.Eng.MIEI MIStructE

Ulick Burke & Associates Limited. Registered in Ireland No: 233579. V.A.T. Registration No: IE 82335791. Directors: U. Burke, R. Burke & P. Kavanagh

Drainage Design Report

for

Walkinstown Apartment Development

at

Ballymount Road Lower, Walkinstown, Dublin 12.

Job No:D1752Client:Walkinstown Montane Properties LimitedDate:24th October 2022Local Authority:South Dublin County CouncilRevision:PreliminaryP2

Ulick Burke & Associates Limited T/A KavanaghBurke Company No: 233579 VAT No: IE 8233579 Director: P.Kavanagh

INTRODUCTION

This report details the site development works design for a mixed-used development at Ballymount Road Lower, Walkinstown, Dublin 12 – planning compliance issue.

The proposed brownfield site is c. 0.931ha in size. The land of the proposed development is bounded on the north and east by residential dwellings, on the south by Ballymount Road Lower, and on the west by industrial facilities. The development consists of 2 no. apartment blocks comprising 163 apartment units, a café and a creche.

The site will be serviced primarily through connection to the existing services in the area.

The provision of the new on-site foul sewer, surface water & watermain are described as follows with calculations appended.

1. Surface Water:

1.1. SuDS Management Plan:

The surface water runoff generated from the proposed development will be routed through a series of Sustainable Urban Drainage System (SuDS) elements which will facilitate the detention and infiltration at source. These devices include green roofs, bio-retention, permeable paving, swales, and carriageway runoff infiltration via tree pits, etc. Only once the rainfall has passed through these devices will the excess runoff enter the drainage network and then reach the underground attenuation system. This facility is designed to attenuate 1 in 30-year storm event of any duration; therefore, no flooding will occur on site for any duration events up to 30-year return period as per "Greater Dublin Strategic Drainage Study" (GDSDS) requirements.

In addition to providing attenuation volume, temporary flood storage is checked and provided where needed (as an integrated part of the attenuation system) for 100-year return events as per GDSDS requirements. The restricted discharge from site will be limited by a proprietary flow control device. The maximum allowable discharge is limited to calculated flow (calculated for overall site, see calculations in the succeeding chapters) not exceeding Greenfield runoff rate, QBAR (as per criterion 4.3 "River Flood Protection" chapter 6.3.4 of GDSDS). All flows and runoffs for storm water network design and attenuation sizing are calculated incorporating 20% climate change factor for all rainfall intensities as per chapter 6.3.2.4 of GDSDS table 6.2 "Climate Change Factors". In addition, a computer analysis in the storm network modelling software was performed to confirm the sizing of the pipe network and underground attenuation storage for 1 in 100-year storms of all durations. This analysis includes a specific model of vortex flow control device with discharge of the calculated QBAR and 20% Climate Change Factor. The analysis indicated no on-site flooding (meaning that both the network and all proposed attenuation storage have sufficient capacities).

A flow control device will be placed at the outlet of the manhole MH SW17 to ensure the flow restriction to QBAR for 1 in 30-year storms. For a 1 in 100-year storms plus 20% Climate Change Factor, the High-Water Level satisfy a minimum freeboard of 500 mm from the lowest Finished Floor Level, as shown on enclosed drawing ref. *D1752-KB-XX-XX-C-0001-Storm Water & Foul Sewer Drainage Layout_RevP2* and *D1752-KB-XX-XX-C-0002-RC Underground Attenuation Tank Levels & Details_RevP2*

The network calculations demonstrating pipes capacities and achieved velocities are included in the Appendix A of this drainage report.

Ulick Burke & Associates Limited T/A KavanaghBurke Company No: 233579 VAT No: IE 8233579I Director: P.Kavanagh

1.2. Proposed SuDS elements to improve the quality and reduce run-off:

In considering the above surface water management solution, consideration was given to the SuDS devices therefore the following measures will be installed:

- Bio-Retention Tree Pits (located on the south besides Ballymount Road Lower).
- Trapped Road Gullies (to collect run-off from the road and footpaths).
- Green roof (to all apartment blocks).
- Intensive soft landscaping (to the development podium)
- Permeable paving (to carparking spaces).
- Permeable footpath (across the public green area).
- Permeable wood fibre (to play area and creche outdoor space).
- Swales and French pipes (to collect run-off from the open green area and the access road).
- Silt trap and petrol interceptor (to the inlet of the attenuation tank for pollution prevention).
- Restricted discharge (to the outlet of site for regional control).

All these SuDS devices are shown on accompanying drawing references *D1752-KB-XX-XX-C-0003-Proposed SuDS Layout_rev.P2 & D1752-KB-XX-XX-C-0004-SuDS Details & Sections_RevP2.*

1.3. Proposed Water Strategy:

The proposed surface water management solution for the subject site provides both runoff quality and quantity control. Quality control is provided by ensuring all surface water runoff is dealt with on site as described earlier in this document. Quantity control is also provided through the surface water attenuation system coupled with the downstream flow control device.

In summary, the following figures synopsise the surface water attenuation calculations:

SITE AREA	9,308 m² (0.931 Ha)
SAAR	701
SOIL VALUE	0.3

STRUCTURE TYPE	RUNOFF COEFFICIENTS	AREA (ha)
Impermeable Areas (Standard roofs; Road; Pathways)	1.0	0.427
Pervious Areas considered impermeable (Green roofs; Podium Landscaping; Permeable Footpath; Permeable paving; Permeable Woodfibre)	1.0	0.350
Public landscaping areas	0.3	0.154
TOTAL	-	0.931

2. Foul Sewer:

A new foul sewer has been designed to collect the discharge of the proposed development and discharge to an existing foul sewer manhole at Ballymount Road Lower. Connection to the existing foul sewer network is proposed at an existing manhole S010308907 at the southeast of site, the exact connection location is shown on accompanying drawing reference *D1752-KB-XX-XX-C-0001-Storm Water & Foul Sewer Drainage Layout_RevP2*.

An average of 6 discharge units per dwelling/apartment/office is used in the design of the network (as per EN-752), and 22 discharge units have been assumed for the café and creche, thus resulting in a total of 1,000 discharge units. The proposed foul sewer network complies with the Table: Sewer Size/Gradient for Multiple Properties in section 3.6 of Irish Water Code of Practice for Wastewater Infrastructure.

The proposed foul sewer including manholes and service connections will be constructed in compliance with design standards set out by Irish Water in the IW Code of Practice for Wastewater Infrastructure and Wastewater Infrastructure Standard Details, as shown on *D1752-KB-XX-XX-C-0001-Storm Water & Foul Sewer Drainage Layout_RevP2*.

The network calculations demonstrating pipes capacities and achieved velocities are included in the Appendix B of this drainage report.

3. Watermain:

The watermain proposed to serve the development will form connection from the existing 150mm watermain at Ballymount Road Lower, the exact connection location is shown on accompanying drawing reference *D1752-KB-XX-XX-C-0005- Watermain Layout_rev.P2*.

A new 100mm diameter watermain within the site will be provided with adequate sluice valves, water meter & fire hydrants to provide water supply and for firefighting purposes. Hydrants will not be placed within 6m of a building or structure and at a maximum 46m from proposed buildings.

All associated details including watermain pipe material will be in accordance with the current Irish Water guidelines. Guidelines set out in the Irish Water Publications IW-CDS_5020-1 & IW-CDS-5030-1 have been consulted and adopted within the design of the proposed drainage & watermain networks. Refer to enclosed drawing reference *D1752-KB-XX-XX-C-0005-Watermain Layout_rev.P2* for details.

4. Surface Water Attenuation Calculation

1) Areas for Attenuation Calculation

Site Area of development:	9,308 m² (0.931 ha)
Overall landscaping:	1,541 m²
Contributing landscaping:	1,541 m²
Pervious surfaces deemed as hardstanding areas (green roofs, permeable paving, permeable footpath, etc.):	3,501 m ²
Impermeable surfaces (standard roofs, road, pathways):	4,266 m ²

2) Interception Storage

Calculate runoff from 5mm of rainfall on developed area.

For this calculation only hardstanding areas are assumed to provide 100% runoff, and non-hardstanding areas are assumed to provide 0% runoff.

The equivalent volume of Interception Storage should be provided on site as no discharge from site should occur for this initial 5mm depth of rainfall. The Interception Storage on this subject site will be provided through the base of attenuation tank.

Design Impermeable Areas:	7,767 m ² x 1.00 = 7,767 m ²
Total volume for 5mm rainfall:	5mm x 7,767 m ² = 38.9 m ³

Therefore, a minimum Interception Storage volume of 39 m³ should be provided. This will prevent discharge from site during rainfall events of up to 5mm rainfall.

3) Greenfield Runoff Rate – QBAR, (mean annual flood flow):

 QBARrural (m³/sec) = 0.00108 x AREA^{0.89} x SAAR^{1.17} x SOIL^{2.17}

 SAAR (E 318950, N 262650):
 771 mm (as per Met Eireann data)

 Soil Index:
 S1 (very low runoff)

 S2
 S3 (moderate runoff)

 S4
 S5 (very high runoff)

 $Soil = 0.1(Soil_1) + 0.3(Soil_2) + 0.37(Soil_3) + 0.47(Soil_4) + 0.53(Soil_5)$

As the site is relatively small in catchment terms the soil class will be 100% Soil₂ as per online Wallingford Procedure Greenfield runoff estimation tool on www.uksuds.com (see Appendix to Surface Water Design for the HR Wallingford Greenfield runoff rate estimation report).

Soil Class:	Soil ₂
Runoff Potential:	Low
Soil Value:	0.3

Q_{BAR}:

As the site area is less than 50 hectares, QBAR for 50 hectares is firstly calculated:

 $Q_{BAR} (m^{3}/sec) = 0.00108 \times AREA^{0.89} \times SAAR^{1.17} \times SOIL^{2.17} = \\ 0.00108 \times (0.5)^{0.89} \times (771)^{1.17} \times (0.3)^{2.17} = \\ 91.3 \ \text{l/sec} = \\ 1.83 \ \text{l/sec/ha}$

Q_{BAR} for the subject site area:

1.83 l/sec/ha x 0.931 ha =

Q_{BAR} = 1.70 l/sec

According to GDSDS chapter 6.3.1.4 if the separate long-term storage cannot be provided and temporary flood storage forms part of the single attenuation system, all the runoff from the site should be discharged at either a rate of 2.0 l/s/ha or the average annual peak flow rate Q_{BAR}, whichever is greater:

2 l/sec/ha x 0.931 ha = 1.86 l/sec

Minimum applicable value: 2.00 l/sec

Therefore, allowable discharge (Q_{BAR}) will be set at 2.00 l/sec.

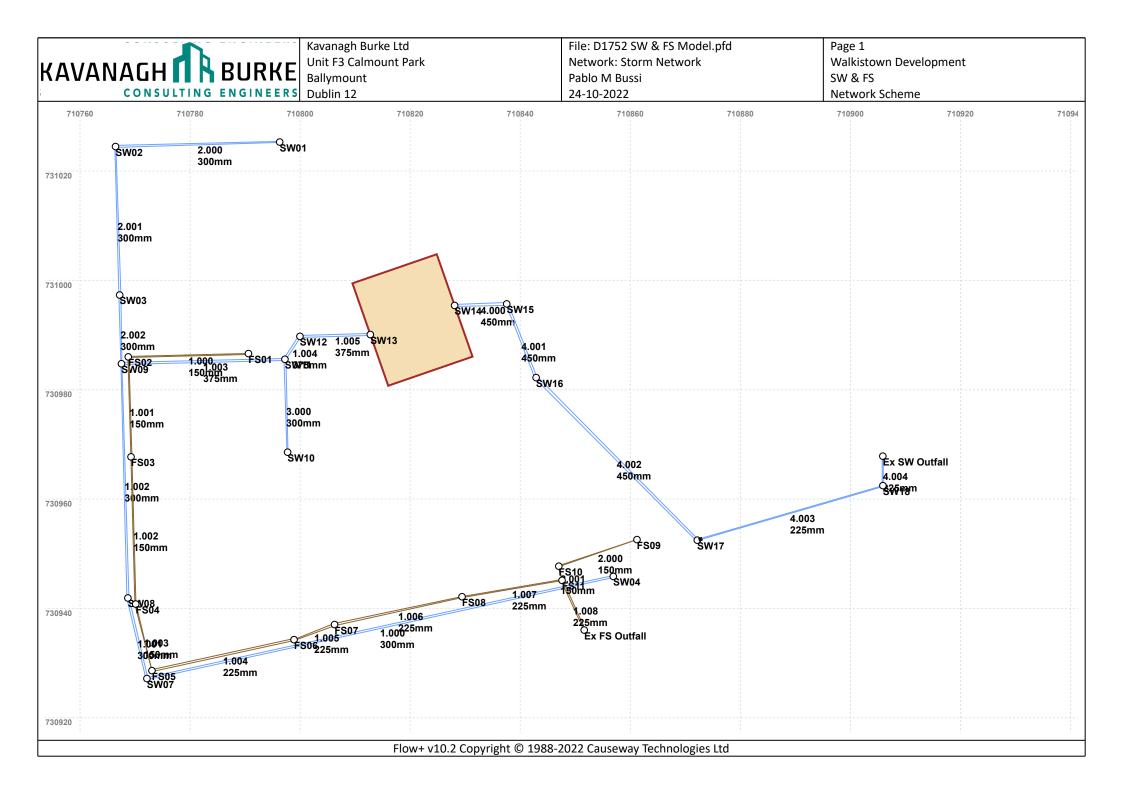
4) Attenuation Storage Volume

INTERCEPTION STORAGE: 39 m³ to be provided by SuDS elements.

These SuDS elements comprise all permeable surfaces, bio retention tree pits, swales, French drains, and green roofs.

Total Green Roof Area: 2,203 m². - Max Water Storage Capacity in the substrate of these equal: 2,203 $m^2 \times 50 \text{ mm} \times 35\% = 38.5 \text{ m}^3$

ATTENUATION VOLUME REQUIRED: 594 m³, as per computer analysis.


ATTENUATION VOLUME PROVIDED: 599 m³

The attenuation volume was calculated in a storm water network modelling software using the sitespecific vortex type flow control device. There was no indication of flood or ponding for any storm duration for 1 in 100-year storms with 20% CCF and there is no flooding or ponding during the analysis. The detailed results of this analysis are enclosed in this report at Surface Water Network Design.

APPENDIX A

Surface Water & Foul Sewer Networks Scheme Surface Water Network Design

		Kavanagh	Burke Ltd		File: D1	752 SW &	FS Model.pfc	Page	1	
	ייחום	Linit E2 C	almount P			k: Storm N	•	-	kistown Dev	velopment
	BURK	I BAIIVIIIOU	nt		Pablo M	l Bussi			Network	
CONSOLITING	S ENGINEE	Dublin 12	-		24-10-2	022		Desi	gn	
				Dec	ian Cottinac					
				Des	ign Settings					
Rainfal	l Methodo	ology FSR			Maximum 1	ime of Co	ncentration (I	mins)	30.00	
Return	Period (y	ears) 2				Maximur	n Rainfall (mr	n/hr)	50.0	
Addit	tional Flov	v (%) 20				Minim	num Velocity	(m/s)	1.00	
	FSR Re	egion Scotla	and and Ire	eland			Connection	Туре	Level Soffi	ts
	M5-60 (mm) 17.20	0		M	inimum Ba	ckdrop Heigh	nt (m)	0.200	
	Ra	tio-R 0.277				Preferre	d Cover Dept	h (m)	1.200	
		CV 0.750	1		I	nclude Int	ermediate Gr	ound	\checkmark	
Time	of Entry (r	mins) 5.00			Enfor	ce best pr	actice design	rules	\checkmark	
					<u>Nodes</u>					
	Name	Area	T of E	Cover	Diameter	Easting	Northi	ng	Depth	
		(ha)	(mins)	Level	(mm)	(m)	(m)	-	(m)	
				(m)						
:	SW01	0.115	5.00	51.700	1200	710796.2	75 731025.	309	1.790	
:	SW02			51.100	1200	710766.4	37 731024.	485	1.290	
	SW03			51.480	1200	710767.1	89 730997.	324	1.770	
	SW04	0.192	5.00	52.400	1200	710856.9	00 730945.	850	1.440	
:	SW07	0.108	5.00	52.600	1200	710772.1	44 730927.	170	1.960	
:	SW08	0.039	5.00	52.300	1200	710768.6	83 730941.	905	1.910	
:	SW09	0.062	5.00	51.650	1200	710767.5	14 730984.	750	2.060	
:	SW10	0.176	5.00	51.300	1200	710797.7	12 730968.	577	1.500	
:	SW11			51.300	1200	710797.2	25 730985.	570	1.800	
:	SW12			51.300	1200	710799.9	53 730989.	762	1.850	
:	SW13			51.300	1200	710812.7	47 730990.	.097	2.311	
:	SW14		5.00	51.300	1200	710828.0	65 730995.	416	2.390	
:	SW15	0.131	5.00	51.450	1200	710837.5	35 730995.	696	2.565	
:	SW16			51.500	1200	710842.8	75 730982.	221	2.650	
:	SW17			52.400	1200	710872.1	69 730952.	482	3.650	
:	SW18			50.800	1200	710905.9	02 730962.	459	2.230	
	Ex SW Ou	tfall		50.800	1200	710905.8	89 730967.	846	2.260	
					<u>Links</u>					
Name	US I	DS Length	n ks (mm	i) / US	SIL DSIL	Fall	Slope Dia	a T	of C Ra	ain
٦	Node No	ode (m)	'n	(r	n) (m)	(m)	(1:X) (mn	n) (m	nins) (mm	n/hr)
		V07 86.790) 1.5		960 50.640		271.2 30			46.2
1 001 5		V08 15 136			640 50 390		60 5 30	00	6 86	45 8

1.000	3004	50007	80.750	1.500	50.500	50.040	0.520	2/1.2	500	0.72	40.2
1.001	SW07	SW08	15.136	1.500	50.640	50.390	0.250	60.5	300	6.86	45.8
1.002	SW08	SW09	42.861	1.500	50.390	49.665	0.725	59.1	300	7.26	44.7
2.000	SW01	SW02	29.849	1.500	49.910	49.810	0.100	298.5	300	5.62	49.6
2.001	SW02	SW03	27.171	1.500	49.810	49.710	0.100	271.7	300	6.16	47.9
2.002	SW03	SW09	12.578	1.500	49.710	49.665	0.045	279.5	300	6.41	47.1
1.003	SW09	SW11	29.722	1.500	49.590	49.500	0.090	330.2	375	7.82	43.3

Name	US	DS	Vel	Сар	Flow	US	DS	Maximum	Σ Area	Σ Add	Pro
	Node	Node	(m/s)	(I/s)	(I/s)	Depth (m)	Depth (m)	Depth (m)	(ha)	Inflow (I/s)	Velocity (m/s)
1.000	SW04	SW07	0.840	59.4	28.9	1.140	1.660	1.660	0.192	0.0	0.834
1.001	SW07	SW08	1.784	126.1	44.7	1.660	1.610	1.660	0.300	0.0	1.633
1.002	SW08	SW09	1.805	127.6	49.3	1.610	1.685	1.685	0.339	0.0	1.690
2.000	SW01	SW02	0.800	56.6	18.6	1.490	0.990	1.490	0.115	0.0	0.717
2.001	SW02	SW03	0.839	59.3	17.9	0.990	1.470	1.470	0.115	0.0	0.735
2.002	SW03	SW09	0.827	58.5	17.6	1.470	1.685	1.685	0.115	0.0	0.725
1.003	SW09	SW11	0.880	97.2	72.7	1.685	1.425	1.685	0.516	0.0	0.963

Name			Dublir	nount n 12			Pabl	vork: Sto o M Buss 0-2022		WORK		Network	evelopment
							<u>Links</u>						
1	US Node	DS Node	<u>م</u>	Length (m)	ks (mm n	n) /	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
	SW10	SW11	-	17.000		500	49.800	49.575	0.225	75.6	300	5.18	50.0
	SW11	SW12		5.001			49.500	49.450	0.050	100.0	375	7.87	43.2
	SW12	SW13		12.798			49.450	49.250	0.200	64.0	375	7.98	42.9
	SW14	SW15		9.474			48.910	48.885	0.025	379.0	450	5.17	50.0
	SW15	SW16		14.495			48.885	48.850	0.035	414.1	450	5.44	50.0
	SW16	SW17		41.744			48.850	48.750	0.100	417.4	450	6.23	47.7
	SW17	SW18		35.177			48.750	48.570	0.180	195.4	225	6.95	45.6
	SW18	Ex SW O	utfall	5.387			48.570	48.540	0.030	179.6	225	7.05	45.3
Name	US Node	DS Noc		Vel (m/s)	Cap (I/s)	Flow (I/s)	Dept	-	n De	kimum epth	Σ Area (ha)	Σ Add Inflow	Pro Velocity
2 000	SW10	C\\//11		1 506	112.8	२० ८	(m) 5 1.200	(m)) 1.425	-	m)	0 176	(I/s)	(m/s) 1.334
3.000 1.004	SW10 SW11	SW11 SW12		1.596 1.603	112.8	28.6 97.2				1.425	0.176	0.0	1.334 1.639
	SW11 SW12	SW12 SW13		2.006	221.5	97.2				1.475 1.675	0.692 0.692	0.0 0.0	1.039
	SW12 SW14	SW15 SW15		0.924	147.0	90.0 0.0				2.115	0.092	0.0	0.000
	SW14 SW15	SW15 SW16		0.924	147.0	21.3				2.115	0.000	0.0	0.642
	SW15 SW16	SW10 SW17		0.884	140.0	20.3				3.200	0.131	0.0	0.631
	SW10 SW17	SW17 SW18		0.880	32.6	20.5 19.4				3.425	0.131	0.0	0.855
4.003	SW17 SW18	Ex SW 0	Jutfall	0.819	34.0	19.4				2.035	0.131	0.0	0.833
		N	FSR Re 15-60 (r	gion Sc mm) 17 tio-R 0. r CV 0.	otland a 7.200 277 750 840	and Ire	land	Additior Check	Skip St Down T nal Stora < Discha	lysis Spe teady Sta Time (mi age (m³/l age (m³/l age Rate rge Volu	ate √ ns) 288 ha) 20. e(s) x		
						Storn	n Duratio	ons			-		
		15 30	60 120	180 240	360 480	60 72			2160 2880	4320 5760	720	0	
		Re	eturn Po (years	s)	limate C (CC %	%)		ional Are (A %)		ditional (Q %)			
				30 100		20 20			0 0		0 0		
				Nod	le SW17	Onlin	e Hydro-	Brake [®] C	ontrol				
		FI	lap Valv	/e x				Objectiv	/e (HE	E) Minim	ise upstr	eam stora	ige
Re	eplaces	Downstre	eam Lir	nk √			Sum	p Availab	le √				
		Invert L	•		50			ct Numbe		-SHE-00	56-2000	-2100-200	00
		Design D		-				ameter (n	-				
		Design F	low (l/	s) 2.0	1	Min No	ode Dian	neter (mn	n) 12(00			
				<u>Node SV</u>	V14 Flov	w thro	ough Pon	d Storage	e Structi	<u>ure</u>			
Base Inf C Side Inf C	Coefficie) 0.00		Time to		Porc ert Level empty (m	(m) 48)0 .910		Channel S	Length (m Slope (1:X Channel I	370.0

			File: D1752 SV Network: Stor Pablo M Buss 24-10-2022	rm Networl		Page 3 Walkistov SW Netw Design	wn Develop ork	ment
		ini SW						
Depth Area (m) (m ²) 0.000 321.5	Inf Area (m ²) 0.0	Depth Are (m) (m 1.864 321	²) (m²)	Depth (m) 1.865	Area (m²) 0.0	Inf Area (m²) 0.0		
		<u>Rair</u>	<u>ıfall</u>					
Event	Peak Intensity	Average Intensity		Event			Peak Intensity	Average Intensity
	(mm/hr)	(mm/hr)					(mm/hr)	(mm/hr)
30 year +20% CC 15 minute summer	246.751	69.822	100 year +20				320.334	90.643
30 year +20% CC 15 minute winter	173.159	69.822	100 year +20				224.796	90.643
30 year +20% CC 30 minute summer	169.279	47.900	100 year +20				221.108	62.56
30 year +20% CC 30 minute winter	118.792	47.900	100 year +20				155.163	62.56
30 year +20% CC 60 minute summer	117.883	31.153	100 year +20				152.993	40.43
30 year +20% CC 60 minute winter	78.318	31.153 19.805	100 year +20				101.645	40.43 25.48
30 year +20% CC 120 minute summer 30 year +20% CC 120 minute winter	74.941 49.789	19.805	100 year +20 100 year +20				96.421 64.060	25.48
30 year +20% CC 180 minute summer	58.639	15.090	100 year +20				74.980	19.29
30 year +20% CC 180 minute winter	38.117	15.090	100 year +20				48.739	19.29
30 year +20% CC 240 minute summer	46.987	12.417	100 year +20				59.798	15.80
30 year +20% CC 240 minute winter	31.217	12.417	100 year +20				39.728	15.80
30 year +20% CC 360 minute summer	36.589	9.416	100 year +20				46.240	11.89
30 year +20% CC 360 minute winter	23.784	9.416	, 100 year +20				30.057	11.89
30 year +20% CC 480 minute summer	29.246	7.729	100 year +20				36.768	9.71
30 year +20% CC 480 minute winter	19.430	7.729	100 year +20				24.428	9.71
30 year +20% CC 600 minute summer	24.233	6.628	100 year +20	% CC 600 n	ninute s	summer	30.342	8.29
30 year +20% CC 600 minute winter	16.558	6.628	100 year +20	% CC 600 n	ninute v	winter	20.731	8.29
30 year +20% CC 720 minute summer	21.810	5.845	100 year +20	% CC 720 n	ninute s	summer	27.215	7.29
30 year +20% CC 720 minute winter	14.658	5.845	100 year +20				18.290	7.29
30 year +20% CC 960 minute summer	18.199	4.792	100 year +20				22.587	5.94
30 year +20% CC 960 minute winter	12.055	4.792	100 year +20				14.962	5.94
30 year +20% CC 1440 minute summer	13.511	3.621	100 year +20				16.644	4.46
30 year +20% CC 1440 minute winter	9.080	3.621	100 year +20				11.186	4.46
30 year +20% CC 2160 minute summer	9.893	2.734	100 year +20				12.092	3.34
30 year +20% CC 2160 minute winter	6.816	2.734	100 year +20				8.332	3.34
30 year +20% CC 2880 minute summer	8.352	2.238	100 year +20				10.148	2.72
30 year +20% CC 2880 minute winter	5.613	2.238	100 year +20				6.820	2.72
30 year +20% CC 4320 minute summer	6.452	1.687	100 year +20				7.772	2.03
30 year +20% CC 4320 minute winter	4.249	1.687	100 year +20				5.118	2.03
30 year +20% CC 5760 minute summer	5.390	1.380	100 year +20				6.451	1.65 1.65
30 year +20% CC 5760 minute winter 30 year +20% CC 7200 minute summer	3.488	1.380 1.180	100 year +20 100 year +20				4.175 5.509	1.65
	4.627	T.TQA	TOO VEdI +20	0 7700	mmule	Summer	7 709	1.40

	Kavanagh Burke Ltd	File: D1752 SW & FS Model.pfc	Page 4
	Unit F3 Calmount Park	Network: Storm Network	Walkistown Development
KAVANAGH	Ballymount	Pablo M Bussi	SW Network
CONSOLITING ENGINEERS	Dublin 12	24-10-2022	Design

Results for 30 year +20% CC Critical Storm Duration. Lowest mass balance: 99.25%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
2880 minute winter	SW01	2580	50.385	0.475	1.5	1.1487	0.0000	SURCHARGED
2880 minute winter	SW02	2700	50.385	0.575	1.5	0.6504	0.0000	SURCHARGED
2880 minute winter	SW03	2700	50.385	0.675	1.5	0.7637	0.0000	SURCHARGED
15 minute winter	SW04	11	51.218	0.258	61.0	0.9814	0.0000	ОК
15 minute winter	SW07	11	50.853	0.213	90.4	0.4763	0.0000	ОК
15 minute winter	SW08	12	50.611	0.221	101.6	0.3406	0.0000	ОК
2880 minute winter	SW09	2700	50.385	0.795	6.7	1.3779	0.0000	SURCHARGED
2880 minute winter	SW10	2640	50.386	0.586	2.3	2.0390	0.0000	SURCHARGED
2880 minute winter	SW11	2640	50.386	0.886	8.8	1.0019	0.0000	SURCHARGED
2880 minute winter	SW12	2640	50.384	0.934	8.6	1.0562	0.0000	SURCHARGED
2880 minute winter	SW13	2640	50.385	1.396	8.5	1.5784	0.0000	ОК
2880 minute winter	SW14	2640	50.385	1.475	6.0	1.6677	0.0000	SURCHARGED
2880 minute winter	SW15	2640	50.385	1.500	3.5	3.2301	0.0000	SURCHARGED
2880 minute winter	SW16	2640	50.385	1.535	3.4	1.7356	0.0000	SURCHARGED
2880 minute winter	SW17	2640	50.385	1.635	2.7	1.8486	0.0000	SURCHARGED
2880 minute winter	SW18	2640	48.607	0.037	1.8	0.0414	0.0000	ОК
2880 minute winter	Ex SW Outfall	2640	48.574	0.034	1.8	0.0000	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
2880 minute winter	SW01	2.000	SW02	1.5	0.345	0.027	2.1019	
2880 minute winter	SW02	2.001	SW03	1.5	0.342	0.025	1.9134	
2880 minute winter	SW03	2.002	SW09	1.5	0.379	0.026	0.8857	
15 minute winter	SW04	1.000	SW07	58.1	0.978	0.978	5.1256	
15 minute winter	SW07	1.001	SW08	89.9	1.716	0.713	0.8168	
15 minute winter	SW08	1.002	SW09	99.4	1.476	0.779	2.7031	
2880 minute winter	SW09	1.003	SW11	6.5	0.508	0.067	3.2782	
2880 minute winter	SW10	3.000	SW11	2.3	0.619	0.020	1.1971	
2880 minute winter	SW11	1.004	SW12	8.6	0.840	0.048	0.5516	
2880 minute winter	SW12	1.005	SW13	8.5	0.847	0.038	1.4116	
2880 minute winter	SW13	Flow through pond	SW14	5.6	0.015	0.000	461.4963	
2880 minute winter	SW14	4.000	SW15	3.5	0.251	0.024	1.5011	
2880 minute winter	SW15	4.001	SW16	3.4	0.286	0.024	2.2966	
2880 minute winter	SW16	4.002	SW17	2.7	0.124	0.019	6.6141	
2880 minute winter	SW17	Hydro-Brake [®]	SW18	1.8				
2880 minute winter	SW18	4.004	Ex SW Outfall	1.8	0.454	0.053	0.0212	513.4

	Kavanagh Burke Ltd	File: D1752 SW & FS Model.pfc	Page 5
	Unit F3 Calmount Park	Network: Storm Network	Walkistown Development
KAVANAGH	Ballymount	Pablo M Bussi	SW Network
CONSOLITING ENGINEERS	Dublin 12	24-10-2022	Design

Results for 100 year +20% CC Critical Storm Duration. Lowest mass balance: 99.25%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
2880 minute winter	SW01	2520	50.835	0.925	1.8	2.2342	0.0000	SURCHARGED
2880 minute winter	SW02	2520	50.833	1.023	1.8	1.1574	0.0000	FLOOD RISK
2880 minute winter	SW03	2520	50.835	1.125	1.8	1.2725	0.0000	SURCHARGED
15 minute winter	SW04	12	51.718	0.758	79.2	2.8779	0.0000	SURCHARGED
15 minute winter	SW07	12	51.320	0.680	111.6	1.5191	0.0000	SURCHARGED
15 minute winter	SW08	12	51.112	0.722	109.3	1.1111	0.0000	SURCHARGED
2880 minute winter	SW09	2520	50.830	1.240	7.7	2.1497	0.0000	SURCHARGED
2880 minute winter	SW10	2520	50.826	1.026	2.8	3.5691	0.0000	SURCHARGED
2880 minute winter	SW11	2520	50.880	1.380	10.1	1.5603	0.0000	SURCHARGED
2880 minute winter	SW12	2760	50.788	1.338	10.6	1.5138	0.0000	SURCHARGED
2880 minute winter	SW13	2760	50.787	1.798	10.2	2.0330	0.0000	ОК
2880 minute winter	SW14	2760	50.787	1.877	10.0	2.1224	0.0000	SURCHARGED
2880 minute winter	SW15	2760	50.787	1.902	3.2	4.0960	0.0000	SURCHARGED
2880 minute winter	SW16	2760	50.787	1.937	2.6	2.1903	0.0000	SURCHARGED
2880 minute winter	SW17	2760	50.787	2.037	2.4	2.3035	0.0000	SURCHARGED
2880 minute winter	SW18	2760	48.609	0.039	2.0	0.0436	0.0000	ОК
2880 minute winter	Ex SW Outfall	2760	48.575	0.035	2.0	0.0000	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
2880 minute winter	SW01	2.000	SW02	1.8	0.365	0.032	2.1019	
2880 minute winter	SW02	2.001	SW03	1.8	0.355	0.030	1.9134	
2880 minute winter	SW03	2.002	SW09	1.7	0.395	0.029	0.8857	
15 minute winter	SW04	1.000	SW07	67.1	0.976	1.130	6.1117	
15 minute winter	SW07	1.001	SW08	96.2	1.723	0.763	1.0659	
15 minute winter	SW08	1.002	SW09	108.7	1.544	0.852	3.0182	
2880 minute winter	SW09	1.003	SW11	7.5	0.517	0.077	3.2782	
2880 minute winter	SW10	3.000	SW11	2.7	0.627	0.024	1.1971	
2880 minute winter	SW11	1.004	SW12	10.6	0.840	0.060	0.5516	
2880 minute winter	SW12	1.005	SW13	10.0	0.874	0.045	1.4116	
2880 minute winter	SW13	Flow through pond	SW14	9.6	0.015	0.000	589.0792	
2880 minute winter	SW14	4.000	SW15	3.2	0.236	0.022	1.5011	
2880 minute winter	SW15	4.001	SW16	2.6	0.274	0.019	2.2966	
2880 minute winter	SW16	4.002	SW17	2.4	0.113	0.017	6.6141	
2880 minute winter	SW17	Hydro-Brake [®]	SW18	2.0				
2880 minute winter	SW18	4.004	Ex SW Outfall	2.0	0.466	0.058	0.0229	564.9

APPENDIX B

Foul Sewer Network Design

VANA		BURKE	Unit F3 Ca Ballymou	almou		N	Network: Foul Network Pablo M Bussi				Walkistown Development			
CC	UNSULTIN	G ENGINEERS	, Dublin 12				4-10-2022			Design				
						Design Set	<u>tings</u>							
		Fre	quency of	use (k	DU) 0.	50	Minir	num Veloc	ity (m/s)	1.00				
		Flow per dwe	elling per d	lay (l/d	day) 26	580		Connect	ion Type	Level Sc	offits			
		Do	omestic Flo	w (l/s/	/ha) 0.	0 M	inimum Ba	ackdrop He	eight (m)	3.000				
		Inc	dustrial Flo	w (I/s,	/ha) 0.	0	Preferre	ed Cover D	epth (m)	1.200				
			Additiona	l Flow	(%) 0	1	nclude Int	ermediate	Ground	\checkmark				
						<u>Node</u>	<u>5</u>							
		Nan	ne Ur	nits	Cover	Manhole	Easti	-	orthing	Depth				
					Level (m)	Туре	(m)		(m)	(m)				
		FS01	12	0.0	51.380	Foul MH	710790	.599 730	986.613	0.980				
		FS02			51.650	Foul MH	710768		986.010	1.395				
		FS03	16	8.0	51.900	Foul MH	710769		967.721	1.770				
		FS04	16	8.0	52.460	Foul MH	710770	.111 730	940.795	2.500				
		FS05			52.600	Foul MH	710773	.059 730	928.618	2.810				
		FS06			52.930	Foul MH	710798		934.281	3.280				
		FS08			52.850	Foul MH	710829		942.133	3.360				
		FS09			52.300	Foul MH	710861		952.583	1.400				
		FS10	9		52.500	Foul MH	710847		947.723	1.850				
		FS11			52.350	Foul MH	710847		945.132	2.960				
	Ex FS Outfall FS07				52.350	Foul MH	710851		936.037	3.010				
		F207			52.940	Foul MH	710806	.242 /30	937.048	3.330				
						<u>Links</u>								
	Na	ame US Nodo	DS Node	_	Length	ks (mm)			Fall (m)	Slope	Dia (mm)			
	1 (Node 000 FS01	Node FS02	2	(m) 21.855	n 1.50	(m) 0 50.40	(m) 0 50.255	(m) 0.145	(1:X) 150.7	(mm) 150			
		001 FS02	FS03		18.296	1.50				146.4	150			
		001 FS02	FS04		26.939	1.50				158.5	150			
		002 FS03	FS05		12.529	1.50				131.9	150			
		004 FS05	FS06		26.439	1.50				188.8	225			
		005 FS06	FS07		7.861	1.50				196.5	225			
		006 FS07	FS08		23.722	1.50				197.7	225			
	1.0	007 FS08	FS11		18.418	1.50		0 49.390		184.2	225			
		008 FS11	Ex FS Ou	itfall	9.948	1.50				199.0	225			
		000 FS09	FS10		15.012	1.50				60.0	150			
	2.0	001 FS10	FS11		2.655	1.50	0 50.65	0 50.600	0.050	53.1	150			
Name	US Node	DS Node	Vel (m/s)	Cap (I/s)		US Depth	DS I Depth	Maximum Depth	Σ Area (ha)	Σ Units (ha)	Σ Add Inflow	Pro Velocity		
	itouc	HUUC	(11/3)	(1)3)	(1/3)	(m)	(m)	(m)	(10)	(10)	(ha)	(m/s)		
1.000	FS01	FS02	0.712	12.6	5.5	0.830	1.245	1.245	0.000	120.0		0.688		
1.001	FS02	FS03	0.723	12.8		1.245	1.620	1.620	0.000	228.0		0.753		
1.002	FS03	FS04	0.695	12.3		1.620	2.350	2.350	0.000	396.0		0.774		
1.003	FS04	FS05	0.762	13.5		2.350	2.585	2.585	0.000	564.0		0.860		
	FS05	FS06	0.834	33.1		2.585	3.055	3.055	0.000	636.0		0.777		
1.004			0.817	32.5		3.055	3.105	3.105	0.000	678.0		0.772		
1.004 1.005	FS06	FS07	0.017						0.000	678.0		0.769		
		FS07 FS08	0.815	32.4	13.0	3.105	3.135	3.135	0.000	0/0.0	0.0	0.705		
1.005	FS06			32.4 33.6		3.105 3.135	3.135 2.735	3.135 3.135	0.000	798.0		0.807		
1.005 1.006	FS06 FS07	FS08	0.815 0.844		14.1						0.0			
1.005 1.006 1.007	FS06 FS07 FS08	FS08 FS11	0.815 0.844	33.6	14.1 15.8	3.135	2.735	3.135	0.000	798.0	0.0 0.0	0.807		

Kavanagh Burke Ltd

File: D1752 SW & FS Model.pfc Page 1

APPENDIX C

Walkinstown Rainfall Return Period data HR Wallingford Greenfiled runoff rate estimation Specification / Product Information for:

- Separators.
- Silt Trap.
- Flow Control Device.

Met Eireann Return Period Rainfall Depths for sliding Durations Irish Grid: Easting: 310770, Northing: 230965,

	Inter	rval						Years								
DURATION	6months,	lyear,	2,	З,	4,	5,	10,	20,	30,	50,	75,	100,	150,	200,	250,	500,
5 mins	2.4,	3.6,	4.2,	5.2,	5.9,	6.4,	8.2,	10.3,	11.7,	13.7,	15.5,	16.9,	19.1,	20.8,	22.3,	N/A ,
10 mins	3.4,	5.0,	5.9,	7.2,	8.2,	8.9,	11.4,	14.3,	16.2,	19.0,	21.5,	23.5,	26.6,	29.0,	31.1,	N/A ,
15 mins	4.0,	5.9,	6.9,	8.5,	9.6,	10.5,	13.4,	16.8,	19.1,	22.4,	25.3,	27.7,	31.3,	34.2,	36.6,	N/A ,
30 mins	5.2,	7.6,	9.0,	11.0,	12.3,	13.4,	17.0,	21.1,	23.9,	27.9,	31.4,	34.2,	38.5,	41.9,	44.8,	N/A ,
1 hours	6.9,	10.0,	11.6,	14.1,	15.8,	17.2,	21.6,	26.6,	29.9,	34.7,	39.0,	42.3,	47.5,	51.5,	54.8,	N/A ,
2 hours	9.2,	13.0,	15.1,	18.2,	20.3,	21.9,	27.3,	33.4,	37.5,	43.2,	48.3,	52.3,	58.4,	63.2,	67.1 ,	N/A ,
3 hours	10.8,	15.2,	17.5,	21.1,	23.5,	25.3,	31.4,	38.2,	42.8,	49.1,	54.8,	59.2,	66.0,	71.2,	75.6,	N/A ,
4 hours	12.1,	17.0,	19.5,	23.4,	26.0,	28.0,	34.6,	42.1,	47.0,	53.8,	59.9,	64.7,	71.9,	77.5,	82.2,	N/A ,
6 hours	14.3,	19.8,	22.7,	27.1,	30.1,	32.4,	39.8,	48.1,	53.6,	61.2,	68.0,	73.2,	81.2,	87.4,	92.5,	N/A ,
9 hours	16.8,	23.1,	26.5,	31.5,	34.8,	37.4,	45.7,	55.0,	61.1,	69.6,	77.1,	82.9,	91.7,	98.6,	104.2,	N/A ,
12 hours	18.9,	25.8,	29.5,	34.9,	38.6,	41.4,	50.4,	60.5,	67.1 ,	76.2,	84.3,	90.5,	100.0,	107.3,	113.3,	N/A ,
18 hours	22.2,	30.2,	34.3,	40.5,	44.6,	47.8,	57.9,	69.2,	76.5,	86.7,	95.6,	102.5,	112.9,	121.0,	127.6,	N/A ,
24 hours	24.9,	33.7 ,	38.3,	45.0,	49.4,	52.9,	63.9,	76.1,	84.0,	94.9,	104.5,	111.9,	123.1,	131.7,	138.8,	163.2,
2 days	31.0,	40.9,	46.0,	53.5,	58.4,	62.1,	74.0,	87.0,	95.4,	106.8,	116.8,	124.3,	135.8,	144.6,	151.8,	176.4,
3 days	35.9,	46.8,	52.3,	60.4,	65.6,	69.6,	82.3,	96.0,	104.7,	116.6,	127.0,	134.8,	146.7,	155.7,	163.0,	188.1,
4 days	40.1,	51.8,	57.8,	66.3,	71.9,	76.1,	89.4,	103.7,	112.8,	125.2,	135.9,	144.0,	156.2,	165.5,	173.0,	198.7,
6 days	47.6,	60.7 ,	67.3,	76.7,	82.7,	87.4,	101.8,	117.2,	126.9,	140.1,	151.5,	160.0,	172.9,	182.6,	190.4,	217.1,
8 days	54.2,	68.5 ,	75.6,	85.7,	92.2,	97.2,	112.6,	128.9,	139.2,	153.1,	165.0,	173.9,	187.3,	197.4,	205.6,	233.3,
10 days	60.2,	75.5,	83.1,	93.9,	100.8,	106.1,	122.3,	139.5,	150.3,	164.8,	177.2,	186.5,	200.4,	210.8,	219.3,	247.8,
12 days	65.9,	82.1,	90.1,	101.5,	108.8,	114.3,	131.3,	149.2,	160.4,	175.5,	188.4,	198.0,	212.4,	223.1,	231.9,	261.2,
16 days	76.3,	94.2,	103.0,	115.4,	123.4,	129.3,	147.7,	167.0,	179.0,	195.1,	208.7,	218.9,	234.1,	245.5,	254.7,	285.5,
20 days	85.9,	105.3,	114.8,	128.2,	136.7,	143.1,	162.7,	183.1,	195.8,	212.8,	227.1,	237.9,	253.8,	265.7,	275.3,	307.4,
25 days	97.2,	118.3,	128.6,	142.9,	152.1,	158.9,	179.9,	201.7,	215.1,	233.1,	248.3,	259.5,	276.3,	288.8,	298.8,	332.4,
NOTES:																

N/A Data not available

These values are derived from a Depth Duration Frequency (DDF) Model

For details refer to:

'Fitzgerald D. L. (2007), Estimates of Point Rainfall Frequencies, Technical Note No. 61, Met Eireann, Dublin', Available for download at www.met.ie/climate/dataproducts/Estimation-of-Point-Rainfall-Frequencies_TN61.pdf

Print

2	HR Wallingford
	Working with water

Calculated by: Pablo Martin Bussi Site name: Walkinstown Site location: Dublin

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS Date: (Defra, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

2

N/A

0.3

Default

Edited

802

12

0.85

2.13

2.61

2.86

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Site Details	
Latitude:	53.31747° N
Longitude:	6.33818° W
Reference:	3095902416
Date:	Sep 12 2022 16:53

Notes

(1) Is Q_{BAB} < 2.0 I/s/ha?

When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.

(2) Are flow rates < 5.0 I/s?

Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.

(3) Is SPR/SPRHOST ≤ 0.3 ?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):	1.99	1.99
1 in 1 year (l/s):	1.69	1.69
1 in 30 years (l/s):	4.24	4.24
1 in 100 year (l/s):	5.19	5.19
1 in 200 years (l/s):	5.69	5.69

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement , which can both be found at www.uksuds.com/termsand-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Total site area (ha): 0.931

Site characteristics

Methodology

Q_{BAR} estimation method: Calculate from SPR and SAAR

Runoff estimation approach IH124

SPR estimation method: Calculate from SOIL type

Default Edited Soil characteristics

SOIL type: 2 HOST class: N/A

SPR/SPRHOST: 0.3 Hydrological characteristics

SAAR (mm): 802 Hydrological region: 12 Growth curve factor 1 year: 0.85 Growth curve factor 30 years: 2.13

Growth curve factor 100 years: 2.61 Growth curve factor 200 years: 2.86 Kingspan Klargester

SEPARATORS

A RANGE OF FUEL/OIL SEPARATORS FOR PEACE OF MIND

to make the right decision or call 028 302 66799

Separators A RANGE OF FUEL/OIL SEPARATORS FOR PEACE OF MIND

Surface water drains normally discharge to a watercourse or indirectly into underground waters (groundwater) via a soakaway. Contamination of surface water by oil, chemicals or suspended solids can cause these discharges to have a serious impact on the receiving water.

The Environment Regulators, Environment Agency, England and Wales, SEPA, Scottish Environmental Protection Agency in Scotland and Department of Environment & Heritage in Northern Ireland, have published guidance on surface water disposal, which offers a range of means of dealing with pollution both at source and at the point of discharge from site (so called 'end of pipe' treatment). These techniques are known as 'Sustainable Drainage Systems' (SuDS).

Where run-off is draining from relatively low risk areas such as car-parks and non-operational areas, a source control approach, such as permeable surfaces or infiltration trenches, may offer a suitable means of treatment, removing the need for a separator.

Oil separators are installed on surface water drainage systems to protect receiving waters from pollution by oil, which may be present due to minor leaks from vehicles and plant, from accidental spillage.

Effluent from industrial processes and vehicle washing should normally be discharged to the foul sewer (subject to the approval of the sewerage undertaker) for further treatment at a municipal treatment works.

SEPARATOR STANDARDS AND TYPES

A British (and European) standard (EN 858-1 and 858-2) for the design and use of prefabricated oil separators has been adopted. New prefabricated separators should comply with the standard.

SEPARATOR CLASSES

The standard refers to two 'classes' of separator, based on performance under standard test conditions.

CLASS I

Designed to achieve a concentration of less than 5mg/l of oil under standard test conditions, should be used when the separator is required to remove very small oil droplets.

CLASS II

Designed to achieve a concentration of less than 100mg/l oil under standard test conditions and are suitable for dealing with discharges where a lower quality requirement applies (for example where the effluent passes to foul sewer).

Both classes can be produced as full retention or bypass separators. The oil concentration limits of 5 mg/l and 100 mg/l are only applicable under standard test conditions. It should not be expected that separators will comply with these limits when operating under field conditions.

FULL RETENTION SEPARATORS

Full retention separators treat the full flow that can be delivered by the drainage system, which is normally equivalent to the flow generated by a rainfall intensity of 65mm/hr.

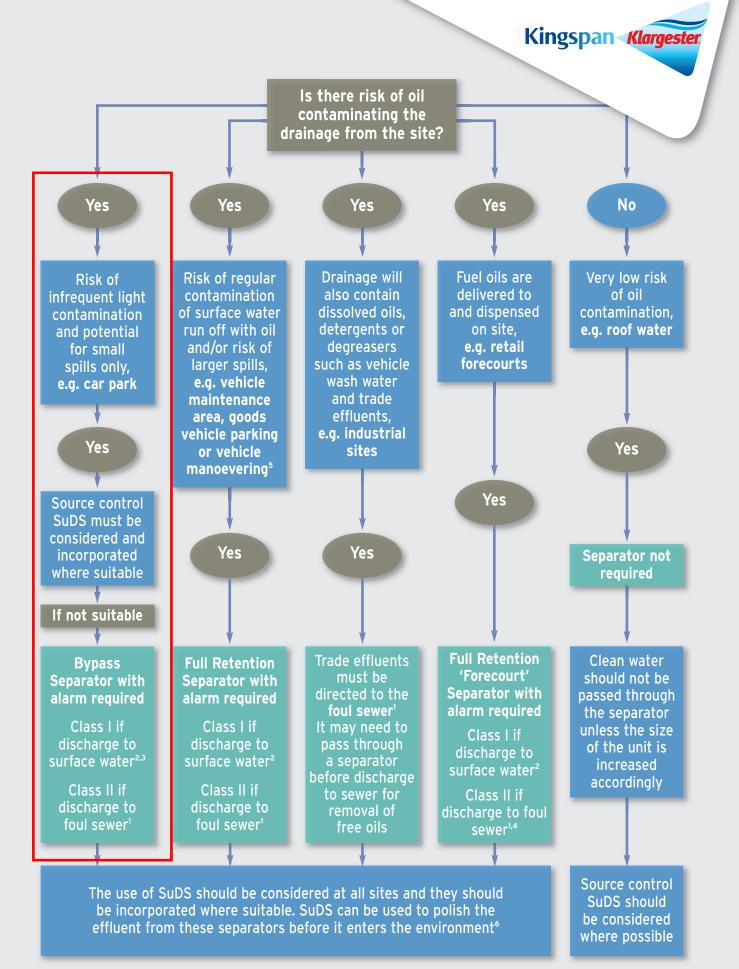
On large sites, some short term flooding may be an acceptable means of limiting the flow rate and hence the size of full retention systems. Get in touch for a FREE professional site visit and a representative will contact you within 5 working days to arrange a visit.

helpingyou@klargester.com to make the right decision or call 028 302 66799

BYPASS SEPARATORS

Bypass separators fully treat all flows generated by rainfall rates of up to 6.5mm/hr. This covers over 99% of all rainfall events. Flows above this rate are allowed to bypass the separator. These separators are used when it is considered an acceptable risk not to provide full treatment for high flows, for example where the risk of a large spillage and heavy rainfall occurring at the same time is small.

FORECOURT SEPARATORS


Forecourt separators are full retention separators specified to retain on site the maximum spillage likely to occur on a petrol filling station. They are required for both safety and environmental reasons and will treat spillages occurring during vehicle refuelling and road tanker delivery. The size of the separator is increased in order to retain the possible loss of the contents of one compartment of a road tanker, which may be up to 7,600 litres.

SELECTING THE RIGHT SEPARATOR

The chart on the following page gives guidance to aid selection of the appropriate type of fuel/oil separator for use in surface water drainage systems which discharge into rivers and soakaways.

For further detailed information, please consult the Environment Agency Pollution Prevention Guideline 03 (PPG 3) 'Use and design of oil separators in surface water drainage systems' available from their website.

Klargester has a specialist team who provide technical assistance in selecting the appropriate separator for your application.

1 You must seek prior permission from your local sewer provider before you decide which separator to install and before you make any discharge.

2 You must seek prior permission from the relevant environmental body before you decide which separator to install.

3 In this case, if it is considered that there is a low risk of pollution a source control SuDS scheme may be appropriate.

4 In certain circumstances, the sewer provider may require a Class 1 separator for discharges to sewer to prevent explosive atmospheres from being generated.

5 Drainage from higher risk areas such as vehicle maintenance yards and goods vehicle parking areas should be connected to foul sewer in preference to surface water.

6 In certain circumstances, a separator may be one of the devices used in the SuDS scheme. Ask us for advice.

Bypass NSB RANGE

APPLICATION

Bypass separators are used when it is considered an acceptable risk not to provide full treatment, for very high flows, and are used, for example, where the risk of a large spillage and heavy rainfall occurring at the same time is small, e.g.

- Surface car parks.
- Roadways.
- Lightly contaminated commercial areas.

PERFORMANCE

Klargester were one of the first UK manufacturers to have separators tested to EN 858-1. Klargester have now added the NSB bypass range to their portfolio of certified and tested models. The NSB number denotes the maximum flow at which the separator treats liquids. The British Standards Institute (BSI) tested the required range of Klargester full retention separators and certified their performance in relation to their flow and process performance assessing the effluent qualities to the requirements of EN 858-1. Klargester bypass separator designs follow the parameters determined during the testing of the required range of bypass separators.

Each bypass separator design includes the necessary volume requirements for:

- Oil separation capacity.
- Oil storage volume.
- Silt storage capacity.
- Coalescer.

The unit is designed to treat 10% of peak flow. The calculated drainage areas served by each separator are indicated according to the formula given by PPG3 NSB = 0.0018A(m2). Flows generated by higher rainfall rates will pass through part of the separator and bypass the main separation chamber.

Class I separators are designed to achieve a concentration of 5mg/litre of oil under standard test conditions.

Class II separators are designed to achieve a concentration of 100mg/litre of oil under standard test conditions.

FEATURES

- Light and easy to install.
- Class I and Class II designs.
- Inclusive of silt storage volume.
- Fitted inlet/outlet connectors.
- Vent points within necks.
- Oil alarm system available (required by EN 858-1 and PPG3).

hact and ro

ght and

Require less ba

- Extension access shafts for deep inverts.
- Maintenance from ground level.
- GRP or rotomoulded construction (subject to model).

To specify a nominal size bypass separator, the following information is needed:-

- The calculated flow rate for the drainage area served. Our designs are based on the assumption that any interconnecting pipework fitted elsewhere on site does not impede flow into or out of the separator and that the flow is not pumped.
- The required discharge standard. This will decide whether a Class I or Class II unit is required.
- The drain invert inlet depth.
- Pipework type, size and orientation.

SIZES AND SPECIFICATIONS

UNIT Nominal Size	FLOW (I/s)	PEAK FLOW RATE (I/s)	DRAINAGE AREA (m²)	STOR Capacity Silt		UNIT LENGTH (mm)	UNIT DIA. (mm)	ACCESS SHAFT DIA. (mm)	BASE TO INLET INVERT (mm)	BASE TO OUTLET INVERT	STANDARD FALL ACROSS (mm)	MIN. INLET INVERT (mm)	STANDARD PIPEWORK DIA. (mm)
NSBP003	3	30	1670	300	45	1700	1350	600	1420	1320	100	500	160
NSBP004	4.5	45	2500	450	60	1700	1350	600	1420	1320	100	500	160
NSBP006	6	60	3335	600	90	1700	1350	600	1420	1320	100	500	160
NSBE010	10	100	5560	1000	150	2069	1220	750	1450	1350	100	700	315
NSBE015	15	150	8335	1500	225	2947	1220	750	1450	1350	100	700	315
NSBE020	20	200	11111	2000	300	3893	1220	750	1450	1350	100	700	375
NSBE025	25	250	13890	2500	375	3575	1420	750	1680	1580	100	700	375
NSBE030	30	300	16670	3000	450	4265	1420	750	1680	1580	100	700	450
NSBE040	40	400	22222	4000	600	3230	1920	600	2185	2035	150	1000	500
NSBE050	50	500	27778	5000	750	3960	1920	600	2185	2035	150	1000	600
NSBE075	75	750	41667	7500	1125	5841	1920	600	2235	2035	200	950	675
NSBE100	100	1000	55556	10000	1500	7661	1920	600	2235	2035	200	950	750
NSBE125	125	1250	69444	12500	1875	9548	1920	600	2235	2035	200	950	750

4

Full Retention NSF RANGE

APPLICATION

Full retention separators are used in high risk spillage areas such as:

- Fuel distribution depots. н.
- Vehicle workshops.
- Scrap Yards .

PERFORMANCE

Klargester were the first UK manufacturer to have the required range (3-30 l/sec) certified to EN 858-1 in the UK. The NSF number denotes the flow at which the separator operates.

The British Standards Institute (BSI) have witnessed the performance tests of the required range of separators and have certified their performance, in relation to their flow and process performance to ensure that they met the effluent quality requirements of EN 858-1. Larger separator designs have been determined using the formulas extrapolated from the test range.

Each full retention separator design includes the necessary volume requirements for:

- Oil storage volume.
- Oil separation capacity. Silt storage capacity.
- Coalescer (Class I units only). н.
- Automatic closure device.

Klargester full retention separators treat the whole of the specified flow.

FEATURES

- Light and easy to install.
- Class I and Class II designs. н.
- 3-30 l/sec range independently tested and performance sampled, . certified by the BSI.
- Inclusive of silt storage volume.
- Fitted inlet/outlet connectors.

- Oil alarm system available.
- Vent points within necks. .
- Extension access shafts for deep inverts. .
- Maintenance from ground level. .
- GRP or rotomoulded construction (subject to model).

To specify a nominal size full retention separator, the following information is needed:-

■ The calculated flow rate for the drainage area served. Our designs are based on the assumption that any interconnecting pipework fitted elsewhere on site does not impede flow into or out of the separator and that the influent is not pumped.

Kingspan Klargester

Advanced tomoulded construction on selected models

rotomou

Compact and robust

Require less backfill

gh, lightweight and / to handle

- The required discharge standard. This will decide whether a Class I or Class II unit is required.
- The drain invert inlet depth.
- Pipework type, size and orientation.

SIZES AND SPECIFICATIONS

UNIT NOMINAL	FLOW (I/s)	DRAINAGE AREA (m²) PPG-3 (0.018)		CAPACITY res)	UNIT LENGTH (mm)	UNIT DIA. (mm)	BASE TO INLET INVERT	BASE TO OUTLET	MIN. INLET INLET (mm)	STANDARD PIPEWORK
SIZE			SILT	OIL			(mm)	INVERT		DIA. (mm)
NSFP003	3	170	300	30	1700	1350	1420	1345	500	160
NSFP006	6	335	600	60	1700	1350	1420	1345	500	160
NSFA010	10	555	1000	100	2610	1225	1050	1000	500	200
NSFA015	15	835	1500	150	3910	1225	1050	1000	500	200
NSFA020	20	1115	2000	200	3200	2010	1810	1760	1000	315
NSFA030	30	1670	3000	300	3915	2010	1810	1760	1000	315
NSFA040	40	2225	4000	400	4640	2010	1810	1760	1000	315
NSFA050	50	2780	5000	500	5425	2010	1810	1760	1000	315
NSFA065	65	3610	6500	650	6850	2010	1810	1760	1000	315
NSFA080	80	4445	8000	800	5744	2820	2500	2450	1000	300
NSFA100	100	5560	10000	1000	6200	2820	2500	2450	1000	400
NSFA125	125	6945	12500	1250	7365	2820	2500	2450	1000	450
NSFA150	150	8335	15000	1500	8675	2820	2550	2450	1000	525
NSFA175	175	9725	17500	1750	9975	2820	2550	2450	1000	525
NSFA200	200	11110	20000	2000	11280	2820	2550	2450	1000	600

Rotomoulded chamber construction GRP chamber construction

5

PROFESSIONAL INSTALLERS

Klargester Accredited Installers

Experience shows that correct installation is a prerequisite for the long-lasting and successful operation of any wastewater treatment product. This is why using an installer with the experience and expertise

to install your product is highly recommended.

Services include :

- Site survey to establish ground conditions and soil types
- Advice on system design and product selection
- Assistance on gaining environmental consents and building approvals
- Tank and drainage system installation
- Connection to discharge point and electrical networks
- Waste emptying and disposal

Discover more about the Accredited Installers and locate your local expert online.

www.klargester.com/installers

CARE & MAINTENANCE

Kingspan Environmental Services

Who better to look after your treatment plant than the people who designed and built it?

Kingspan Environmental have a dedicated service division providing maintenance for wastewater products.

Factory trained engineers are available for site visits as part of a planned maintenance contract or on a one-off call out basis.

To find out more about protecting your investment and ensuring peace of mind, call us on:

0844 846 0500

or visit us online: www.kingspanenvservice.com

COMMERCIAL WASTEWATER SOLUTIONS

- BIODISC[®], BIOTEC[™] & ENVIROSAFE HIGH PERFORMANCE SEWAGE TREATMENT SYSTEMS
- HILLMASTER PACKAGE PUMP STATIONS
- PUMPSTOR24 PUMPING SYSTEMS
- STORMWATER ATTENUATION SYSTEMS
- OIL/WATER SEPARATORS
- BELOW GROUND STORAGE TANKS
- GREASE & SILT TRAPS

NEW BUILD & RETROFIT SOLUTIONS

- BELOW GROUND RAINWATER HARVESTING SYSTEMS
- ABOVE GROUND RAINWATER HARVESTING SYSTEMS

Klargester

UK: College Road North, Aston Clinton, Aylesbury, Buckinghamshire HP22 5EW Tel: +44 (0) 1296 633000 Fax: +44 (0) 1296 633001 Scottish Office: Tel: +44 (0) 1355 248484 email: info@klargester.com

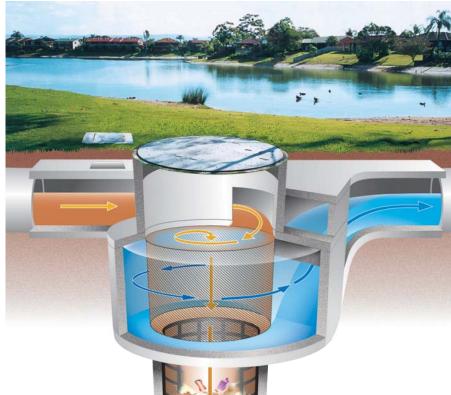
Ireland: Unit 1a, Derryboy Road, Carnbane Business Park, Newry, Co. Down BT35 6QH NI Tel : +44 (0) 28 302 66799 Fax: +44 (0) 28 302 60046 ROI Tel: 048 302 66799 Fax: 048 302 60046 email: info@klargester.ie

Visit our website www.klargester.com, or our company website www.kingspanenv.com

Certificate No. FM 563603

Certificate No. OHS 563604

In keeping with Company policy of continuing research and development and in order to offer our clients the most advanced products, Kingspan Environmental reserves the right to alter specifications and drawings without prior notice.



Specialists in Wastewater Treatment & Stormwater Management

Surface Water Treatment SUDs Protector The CDS Non Blocking screening technology is an

The CDS Non Blocking screening technology is an innovative method of liquid / solid separation for Surface Water, Combined Sewer Overflows (CSO) and Foul Sewage Systems.

- **SurfSep** for Surface Water applications
- **OverSep** for Combined Sewer Overflow applications.

The technology accomplishes high efficiency separation of settleable particulate matter and capture of floatable material.

A unique feature of the CDS Technology is it's compact design. Both the *SurfSep* and *OverSep* are available as packaged systems, which can either be installed inside pre-cast concrete chamber rings, or complete BBA Approved Polyethylene Chambers unit.

Applications

- Storm-water Treatment
- Combined Sewer Overflow Treatment
- Parking Area Run-Off Treatment
- Vehicle Service Yard Areas
- Pre-treatment for Wetlands, Ponds and Swales
- Rainwater Harvesting
- Pre-treatment for Oil Separators
- Pre-treatment for media and Ground In-filtration Systems

www.cdstech.com.au

Rapid installation

Primary features

- **Effective**: Capturing more than 95% of solid pollutants.
- **Non-Blocking**: Unique design takes advantage of indirect filtration and properly proportioned hydraulic forces that virtually makes the unit unblockable.
- **Non-Mechanical**: The unit has no moving parts and requires no mechanical devices to support the solid separation function.
- Low Maintenance Costs: The system has no moving parts and is fabricated of durable materials.
- **Compact & Flexible**: Design and size flexibility enables the use of various configurations.
- **High Flow Effectiveness**: The technology remains highly effective across a broad spectrum of flow ranges.
- Assured Pollutant Capture: All materials captured are retained during high flow conditions.

Safe & Easy Pollutant Removal:

Extraction methods allow safe and easy removal of pollutants without manual handling.

Surface Water System

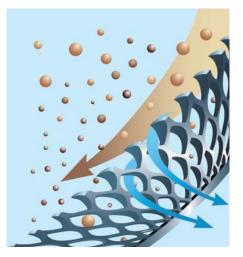
Hydraulic Analysis

In storm water applications, an analysis of the catchment in terms of its size, topography and land use will provide information for determining flow to be expected for various return periods.

The SurfSep is designed for the flow that mobilizes the gross pollutants within the catchment. Since there are variations in catchment response due to region, land use and topography, it is recommended that the selection of flow to be treated will be for return periods of between 3 months and 1 year.

Balancing the cost to the operator against the benefits to the environment

Field evaluations to determine pollutant mobilization have found that the vast majority of pollutants are mobilized in flows that are well below the design capacity' for the conveyance facility - typically known as the 'first flush'.


Therefore it is typical not to design the *SurfSep* models to process the conveyance system's maximum flow in order to achieve a very high level of pollutant removal.

The added value benefit to the operator is reduced civil costs without compromising the benefits to the environment.

How it works

Water and pollutants enter the system and are introduced tangentially inside the separation chamber forming a circular flow motion. Floatables and suspended solids are diverted to the slow moving centre of the flow. Negatively buoyant solids settle out to an undisturbed sump chamber below, while the water passes

countercurrently through the separation screen. Floatables remain at the water surface and retained within the screen.

Surface Water Treatment Systems

Hydraulic Design

Every application requires a detailed hydraulic analysis to ensure the final installation will perform to effect optimum solids separation without blocking the screen.

After the design flow has been determined, the appropriate standard model can be selected. A selection table is provided on page 7.

The Ultimate SUDs Protector

There a four principal areas of proprietary SUDs technology;

• Infiltration • Flow Control • Storage/attenuation • Treatment

SurfSeps, although a common form of treatment are unique. When installed upstream of any proprietary SUDs technology, the *SurfSep* protects the receiving SUDs from fine solids and debris that would otherwise accumulate over time rendering the SUDs non-operational, as the worst case.

SurfSeps have been successfully installed in front of;

- Soakaways
- Infiltration Trenches
- Filters
- Wetlands
- Ponds and Water Features
- Detention and Retention Systems
- Oil Separators
- Create storage storage systems

to remove fine solids and debris that would otherwise accumulate over time reducing the down stream effectiveness of downstream SUDs assets.

Various independent field trials have shown that the *SurfSep* can remove high levels of Phosphates, Heavy Metals and PolyAramatic Hydrocarbons (PAH's) from the flow.

Infiltration

SurfSeps have been successfully installed in front of ground Infiltration systems to remove grit, fine solids and debris which accumulates in and around the SUDs causing visual degradation in the short term and accumulation of silt and grits leading to reduced volume in the long term.

Studies have also shown that Heavy metals & PAH's accumulate within the SUDs over time before being released back to the environment resulting in elevated concentrations.

Detention & Retention Systems

SurfSeps have been successfully installed in front of collection and attenuation SUDs to remove grit, fine solids and debris which accumulates in the SUDs leading to potential blockage of flow regulators resulting in increased Occupational Health & Safety risk during the treatment of blockages and during the periodic cleaning operations.

Applications

- Rainwater Harvesting
- Road run off
- New Developments
- Motorways
- A / B Roads
- Local Roads
- Residential
- Industrial
- Commercial

Purpose

Removal of plastics, oil, grit, fine solids, organic and inorganic debris, from point source pollution.

Flow Control Systems

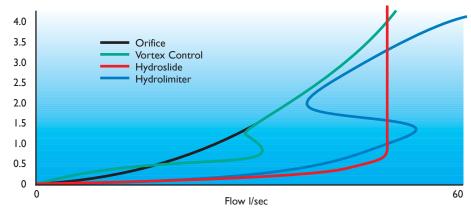
Flow Control

Flow control is often required to reduce flooding of downstream sewer networks or receiving water courses. There are a number of ways to achieve this. The Hydroslide - Float controlled, constant flow regulator, as detailed below is ideally suited to the providing an efficient and reliable means of flow control.

There are four types of standard Hydroslide flow regulators as pictured.

- I) Mini
- 2) HydroLimiter
- 3) VS Vertical Standard
- Combi self flushing, can be mounted on the dry or wet side of the flow chamber.

Most applications can be dealt with using any of the four models to suit the flow. An accuracy of +/-5% is achievable.


Typical SurfSep installation

Flow Control Technical Design

The Hydroslide regulator does not affect the flow until the flow is approaching the set discharge limit, this allows all flow (the first flush) to be discharged to the sewer. Because the flow to the sewer can be optimised at it's maximum permitted capacity the attentuation/storage capacity can be reduced over other methods of flow control, thus giving cost savings in storage provision. This is best explained by looking at a single storm event and comparing the 3 flow regulation processes as was done independantly by WRc in the report titled 'REDUCING THE COST OF STORMWATER STORAGE', Report No. PT1052, March 1995. The chart below represents 50 I/s control and up to 4m of head. The area difference between the curves being the detention volume saving.

Typically the volume saving when using a Hydroslide regulator is between 7% to 40%

Representation of flow through an orifice

Operation & Performance

Performance Criteria

Note: Screen apertures of 4.8 mm , 2.4 mm and 1.2 mm are available.

The 4.8 and 2.4 mm screens are generally used for Surface Water applications, with foul applications using either 2.4 or 1.2 mm aperture units.

Typical 1.2 mm aperture Performance

- shall remove all solids with a single dimension greater than 1.2 mm and positively contain those solids until the unit is cleaned.
- shall remove and positively contain 100 percent of all neutrally buoyant particles with a single dimension greater than 1.2 mm for all flow conditions to design capacity.
- shall remove and positively contain 100 percent of all floating trash and debris with a single dimension greater than 1.2 mm for all flow conditions to the design capacity.
- shall remove a minimum of 50 percent of oil and grease (as defined as the floating portion of total hexane extractable materials) for all flow conditions to the design capacity, without the addition of absorbents.
- shall provide the following minimum particle removal efficiencies (based on a specific gravity of 2.65):
- a) 100 percent of all particles greater than 1100 microns.
- b) 95 percent of all particles greater than 550 microns.
- c) 90 percent of all particles greater than 367 microns.
- d) 20 percent of all particles greater than 200 microns.

Maintenance

SurfSep maintenance can be site and drainage area specific. The installation should be inspected periodically to assure its condition to handle anticipated runoff. If pollutant loadings are known, then a preventive maintenance schedule can be developed based on runoff volumes processed.

Since this is seldom the case we recommend;

New Installations

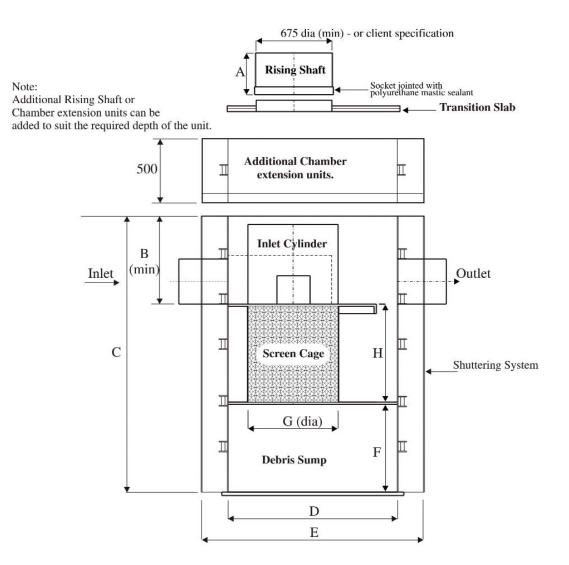
Check the condition of the installation after the first few events. This includes a visual inspection to ascertain that the unit is operating correctly and measuring the amount of deposition that has occurred in the unit. This may be achieved using a 'Dip Stick'.

Ongoing Operation

For the first 12 months the installations sump full volume should be inspected monthly and recorded. When the inspection indicates that the sump full volume is approaching the top of the sump (base of screen) a cleanout should be undertaken.

Cleaning Methods

- Eduction (Suction)
- Basket Removal
- Mechanical Grab


Maintenance Cycle

Minimum once per year. Depending on the pollutant load it may be necessary to maintain the installation more frequently.

The operator shall be able to devise the most efficient maintenance schedule for any particular installation over a 12 month operating cycle.

SurfSep **Dimensions**

SurfSep Dimensions (mm)

	SWI0404	SW0604	SW0606	SW0804	SW0806	SVV0808	SWI010	SWI012	SWI015
А	370	370	370	370	370	370	500	500	500
В	444	815	615	810	830	810	800	800	830
С	1250	1985	1985	2080	2300	2480	2800	3000	3330
D	800	1200	1200	1500	1500	1500	2000	2000	2000
E	1112	1665	1665	1966	1966	1966	2475	2475	2475
F	400	700	700	700	700	800	1000	1000	1000
G (dia)	400	600	600	800	800	800	1000	1000	1000
Н	400	400	600	400	600	800	1000	1200	1500

Selection Table - SurfSep

Model Reference	Hydraulic Peak Flow Rate l/s	Drainage Area - Impermeable m ²	Chamber Diameter (mm)	Internal Pipe Diameter (mm)
SVVI 0404	30	2,000	900	150 / 225
SVVI 0604	70	5,000	1200	225
SVVI 0606 / 01	140	10,000	1200	225 - 375
SVVI 0606 / 02	200	15,000	1200	225 - 375
SVVI 0804	275	20,000	1500	300
SVVI 0806	350	25,000	1500	450
SVVI 0808	400	30,000	1500	450
SVVI 1010	480	35,000	2000	450
SWI 1012	550	40,000	2000	450 / 750
SVVI 1015	700	50,000	2000	450 / 750

* Proposed Peak Flow Rate for each model calculated using Rational Lloyd Davies with a rainfall intensity of 50mm/hr: For greater flows - special design / construction required.

In-Line SurfSep Units (SWI)

These units are used with in the drainage system in-line and are supplied as BBA Approved complete Polyethylene Chamber units from the selection table above.

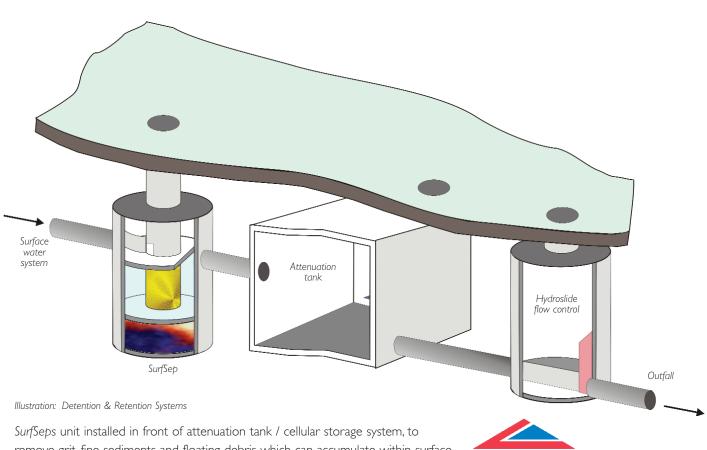
Off-Line SurfSep Units (SWO)

These can be designed either using pre-cast concrete or specially designed Polyethylene chambers.

Model Designation

SurfSep models are firstly identified by the letters SW for Surface Water followed by a letter (**I** or **O**) representing the configuration (**I**nline or **O**ffline).

A four digit number representing the screen diameter and screen height then follows to give the standard model designation for a *SurfSep* screen for installation into


standard commercially available pre-fabricated manhole chambers i.e SWI 0806. Example: SWI 0806 designates Surface Water Inline with a separation screen dia 0.8 m and screen height of 0.6m.

Surface Water Treatment

remove grit, fine sediments and floating debris which can accumulate within surface water systems. Hydroslide flow control regulating the discharge to the outfall. The Hydroslide can be supplied for installation in an insitu constructed chamber, or as a complete unit housed within a pre-fabricated polyethylene manhole chamber.

Approved Suppliers

If you would like more information please contact:

CDS Technologies is a multi disciplined, international, company offering a comprehensive product range of, wastewater treatment technologies and processes, and stormwater management solutions for attenuation, infiltration, flow control and overflow treatment. CDS have an established network of Distributors and Representatives. Further information can be found on our website www.cdstech.com.au

* BBA - THIS CERTIFICATE RELATES TO PIPEX UNIVERSAL MANHOLES AND ACCESS CHAMBERS, WHICH ARE

MANUFACTURED FROM WELDED POLYPROPYLENE. This Certificate covers the use of the manholes and

chambers for drain and sewer applications where they are

used for maintenance to depths of 6 mtrs.

BBA

Alternatively please contact our approved supplier detailed left.

Hydro-Brake[®] Flow Control

Modelling Guide

RTIFICATION

See back cover for details.

STH Range of

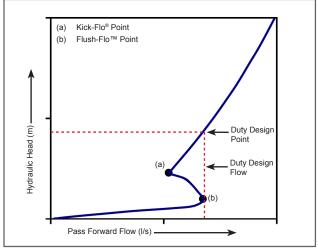
Hydro-Brake[®] Flow Controls

Unit Selection Design Guide

Overview

Hydro-Brake[®] Flow Controls restrict the flow in surface/storm water or foul/combined sewer systems by inducing a vortex flow pattern in the water passing through the device, having the effect of increasing back-pressure.

Their 'hydrodynamic' rather than 'physical restriction' based operation provides flow regulation whilst maintaining larger clearances than most other types of flow control, making them less susceptible to blockage. Their unique "S"-shaped head-flow characteristic also enables them to pass greater flows at lower heads, which can enable more efficient use of upstream storage facilities.


This document provides guidance relating to the selection and use of Hydro-Brake[®] Flow Controls for use in surface/storm water and foul/combined sewer systems.

The information provided here is intended for the purposes of general guidance only - individual application requirements may differ. If in doubt, or to enquire about new product additions, please contact HRD Technologies Ltd.

Hydraulic Characteristics and Specification

Hydro-Brake[®] Flow Controls should be selected such that the duty/design flow is not exceeded at any point on the head-flow curve, see illustration right. If this is not achievable using the initially selected unit, it may be appropriate to select an alternative option (see selection guidance overleaf).

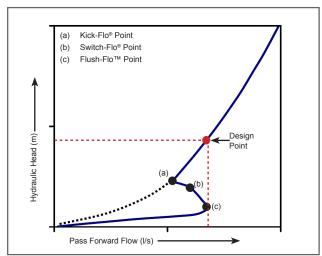
While the primary aim of a flow control is to provide a particular flow rate at a given upstream head (giving a design/duty point), it is important to note that secondary opportunities, such as potential for optimised storage use, derive from consideration of the full hydraulic characteristic. It is therefore important to ensure that the same flow control, or one confirmed to provide equivalent hydraulic performance, is implemented in any final installation.

Typical Hydro-Brake® Head Versus Flow Characteristics

To ensure correct implementation a multiple design-point specification, defining the main hydraulic features of the selected flow control, can be provided by HRD Technologies Ltd. This should include at least the following information:

- outlet size and model of Hydro-Brake[®] Flow Control
- definition of the duty/design point (head and flow)
- definition of the Flush-Flo[™] point (head and flow)
- definition of the Kick-Flo[®] point (head and flow)

To ensure that a drainage system performs as designed, it is strongly recommended that this information is reproduced on any technical specifications.


turning water around ...[®]

STH Type Hydro-Brake® Flow Control with BBA Approval

Now included in WinDes® W.12.6!

The new STH type Hydro-Brake[®] Flow Control range has a unique head / discharge performance curve which introduces a very important feature - the Switch-Flo[®] Point. This point illustrates the unique performance feature of the STH range which can lead to further savings in upstream storage, whilst also enabling increased inlet / outlet size to further reduce the risk of blockage.

condition.

Typical STH Head Versus Flow Characteristics

BBBA APPROVAL INSPECTION TESTING CERTIFICATE NO 09/4599 STH Range of

Hydro-Brake[®] Flow Controls

The STH Hydro-Brake[®] Flow Control is the only vortex flow control available today that has been given the prestigious BBA Approval Certificate. The BBA assessment procedure entails rigorous assessment of production and manufacturing standards, and confirms that the hydraulic performance of the Hydro-Brake[®] Flow Control matches the data given to designers by HRD Technologies with their head / discharge curves.

A worked example showing the steps to model a Hydro-Brake[®] Flow Control and associated Stormcell[®] Storage System within Micro Drainage Win*Des*[®] is available on our website:

www.hrdtec.com

Take a Look at Our New Stormwater Web Resource

Engineering Nature's Way is a brand new resource for people working with Sustainable Drainage and flood management in the UK.

Kick-Flo[®] (a) - the point at which the vortex has initiated and at which the curve begins to return back to follow the orifice curve

and reach the same design point or desired head / flow

NEW Switch-Flo[®] (b) - marks the transition between the Kick-Flo[®] and Flush-Flo[™], from vortex initiation to stabilisation. This point adds a new layer of resolution to the Hydro-Brake[®] curve that has

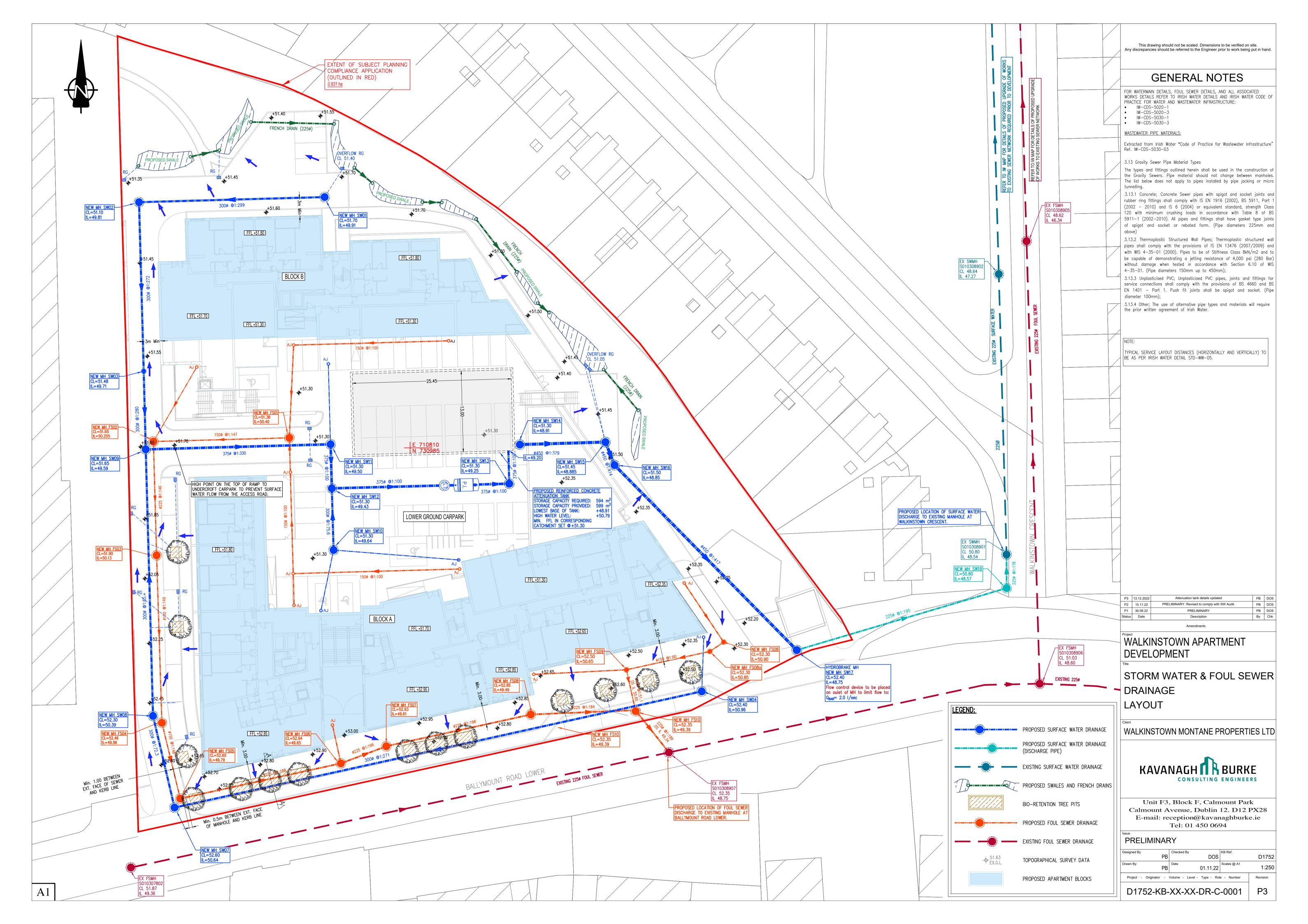
Flush-Flo[™] (c) - the point at which the vortex begins to initiate and have a throttling effect. This point on the Hydro-Brake[®] curve is usually much nearer to the maximum design flow (Design Point), than other vortex flow controls leading to more water passing through the unit during the earlier stages of a storm, thus

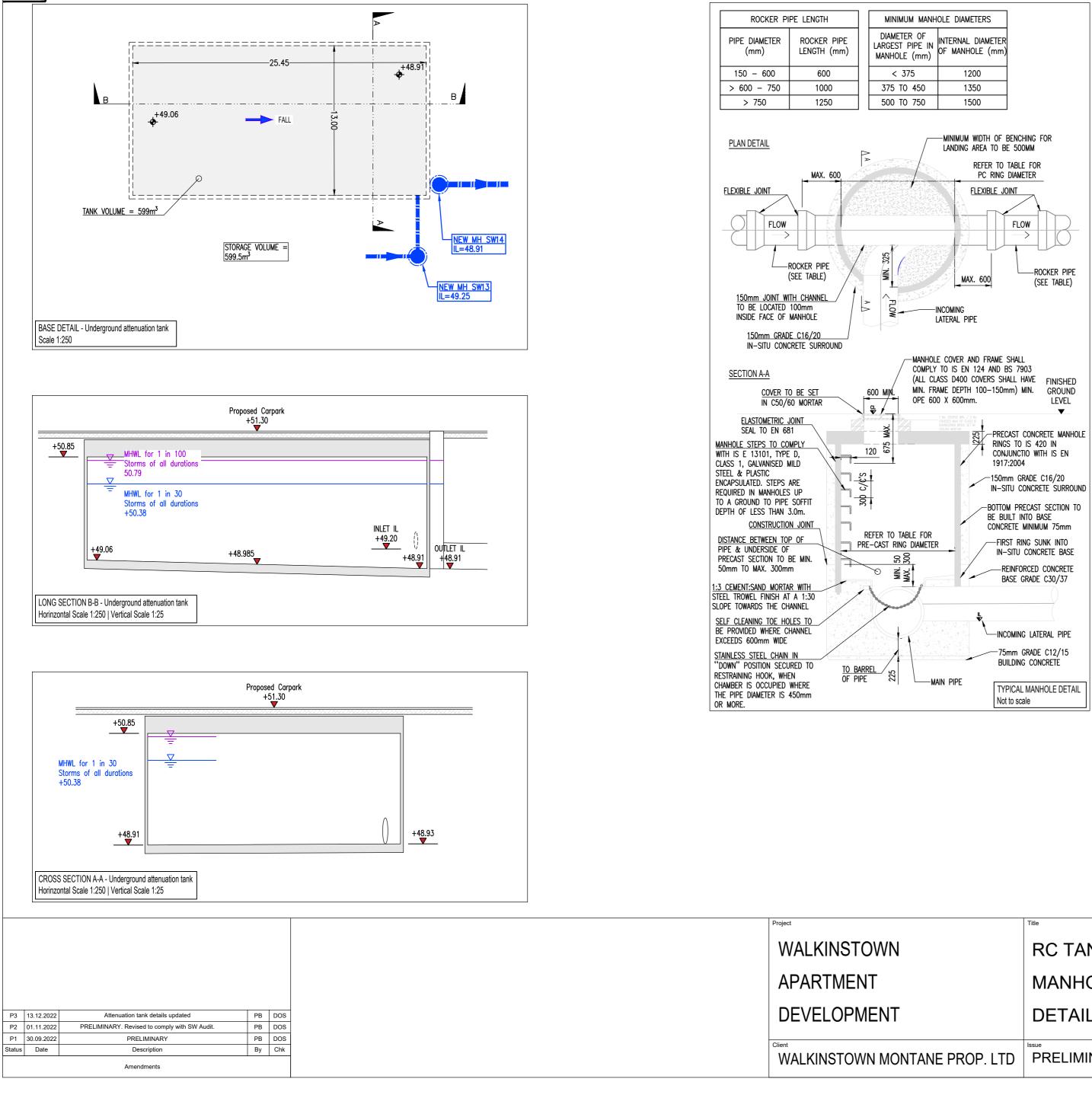
reducing the amount of water that needs to be stored upstream.

implications to upstream storage savings.

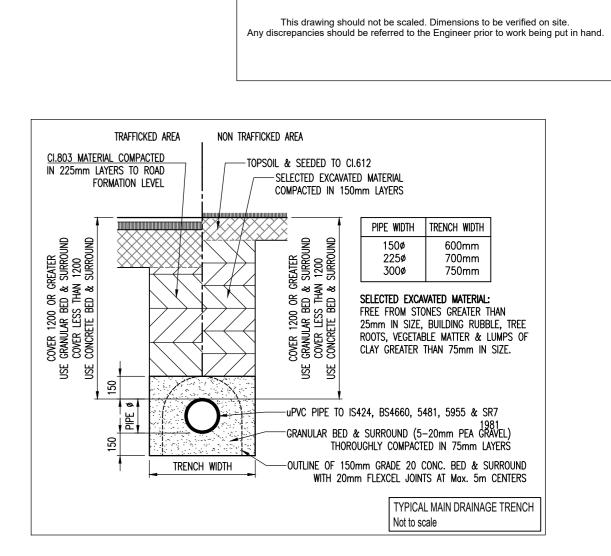
The site provides an opportunity to share news, opinion, information and best practice for people working in local and central Government; developers, consulting engineers and contractors. Do you have something to share? We would be delighted to receive your contributions.

turning water around ...[®]

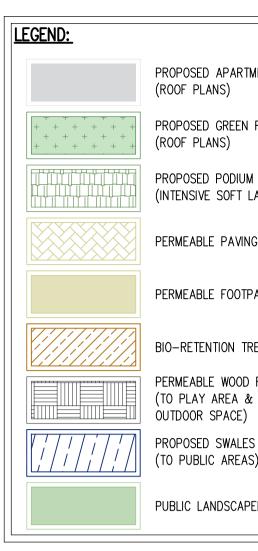

This information is for guidance only and not intended to form part of a contract. HRD Technologies Ltd pursues a policy of continual development and reserves the right to amend specifications without prior notice. Equipment is patented in countries throughout the world.



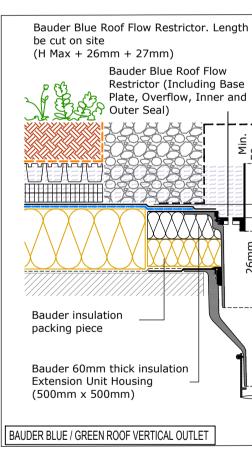
HRD Technologies Ltd • Tootenhill House • Rathcoole • Co. Dublin • Ireland Tel: +353 (0) 1 4013964 • Fax: +353 (0) 1 4013978 • www.hrdtec.com HRD Technologies Ltd is a subsidiary of Hydro International plc

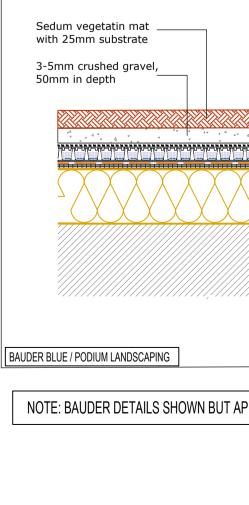


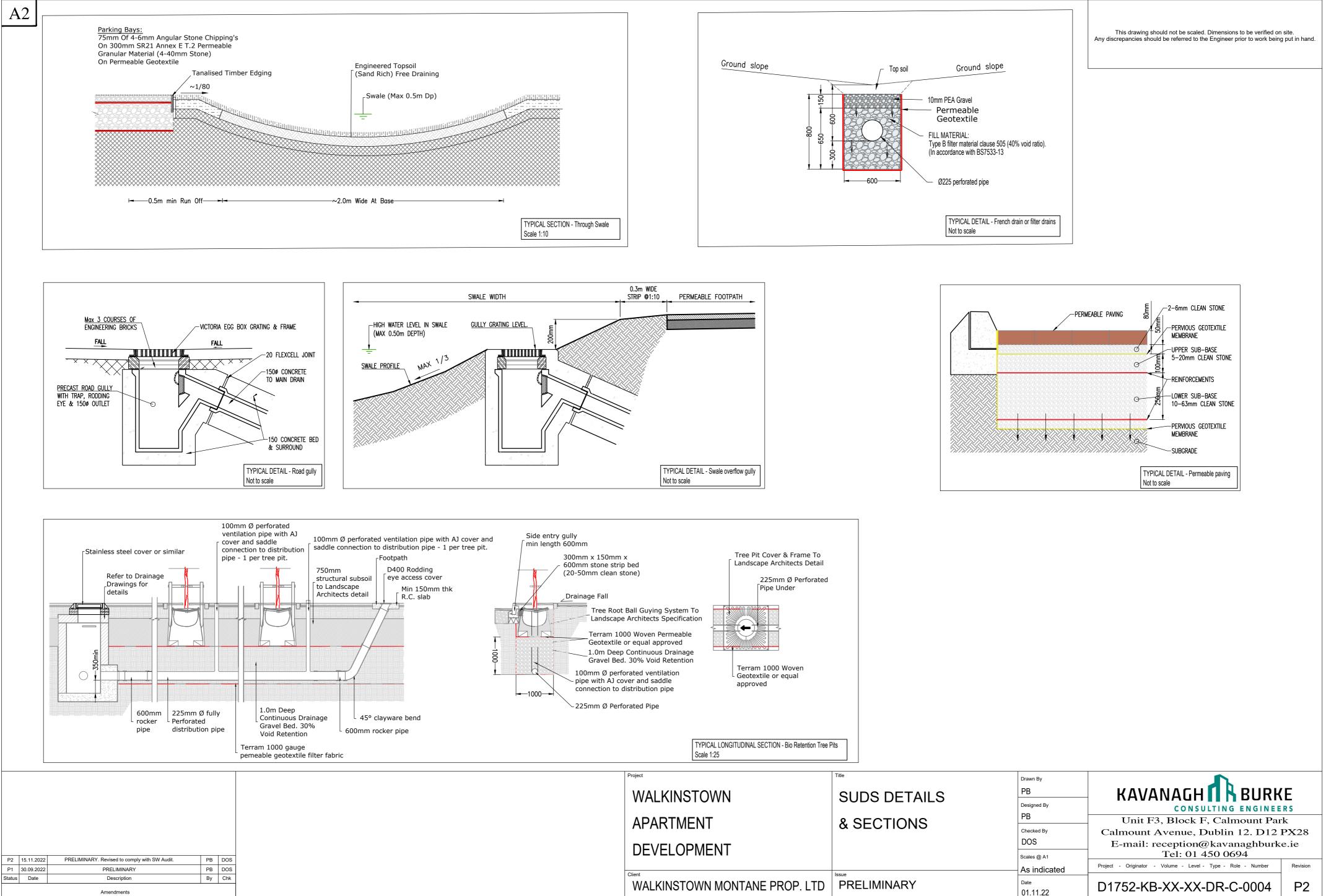
© HRD Technologies Ltd 2011 IRL HBFC Modelling Guide A1211

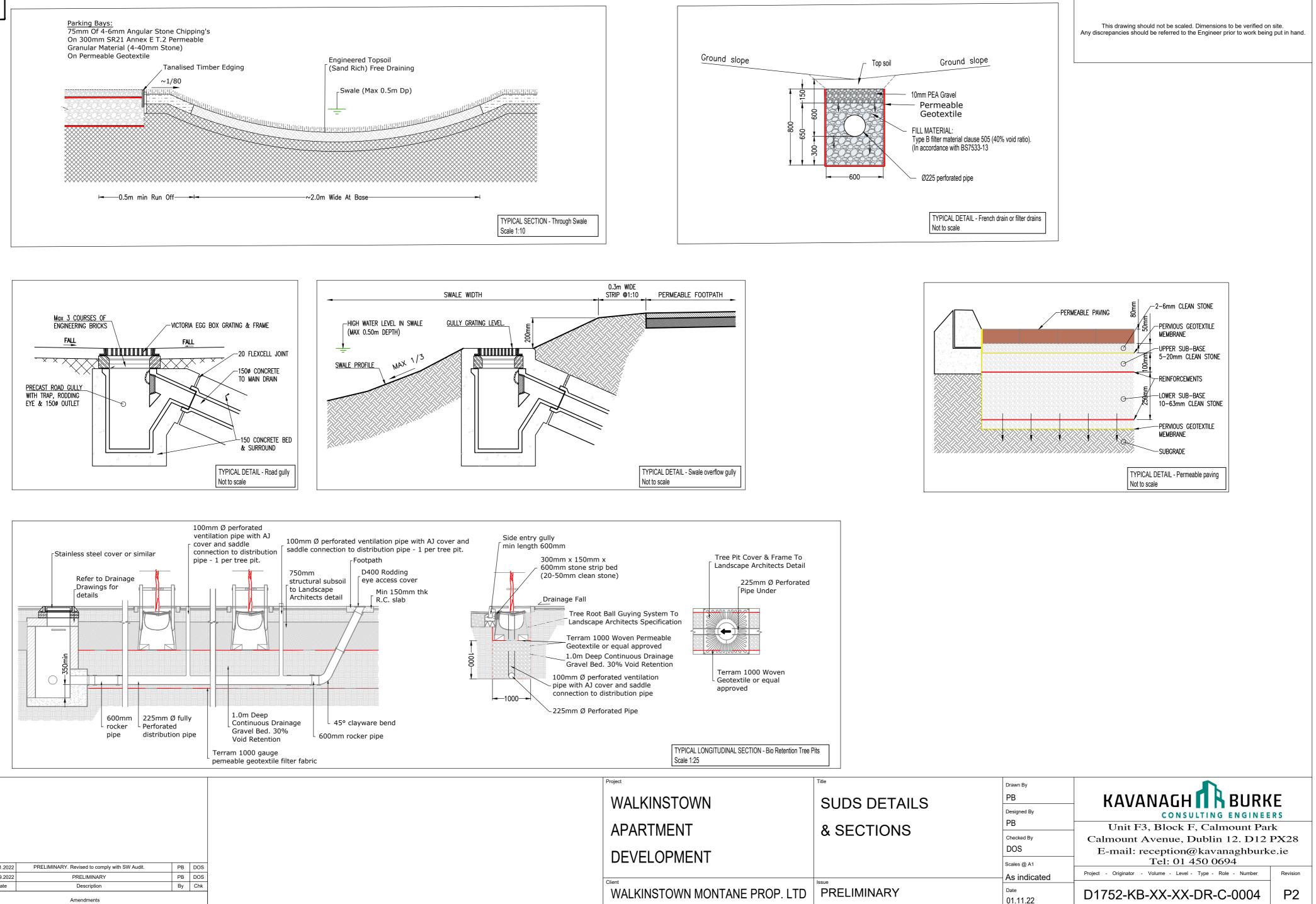


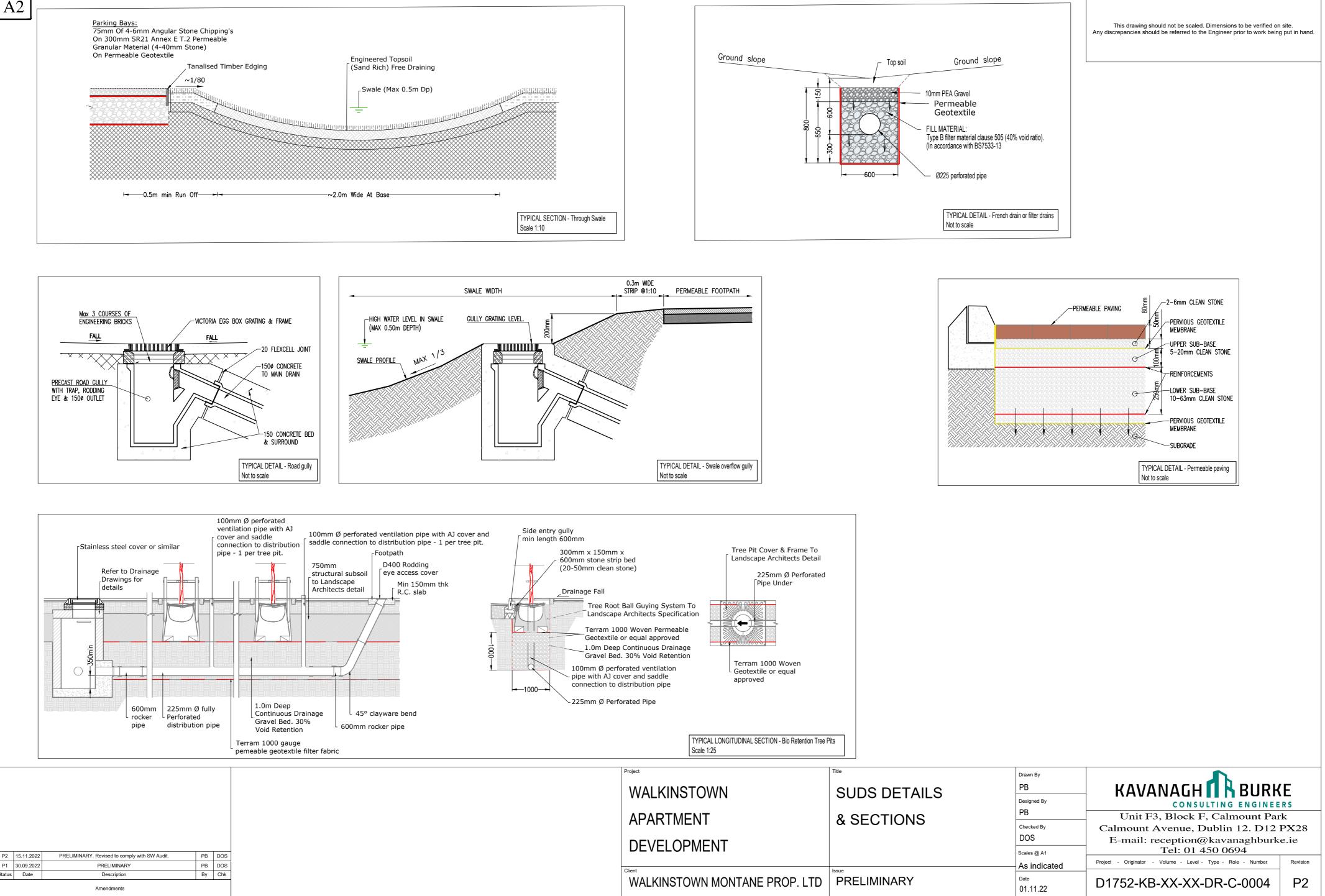
A2

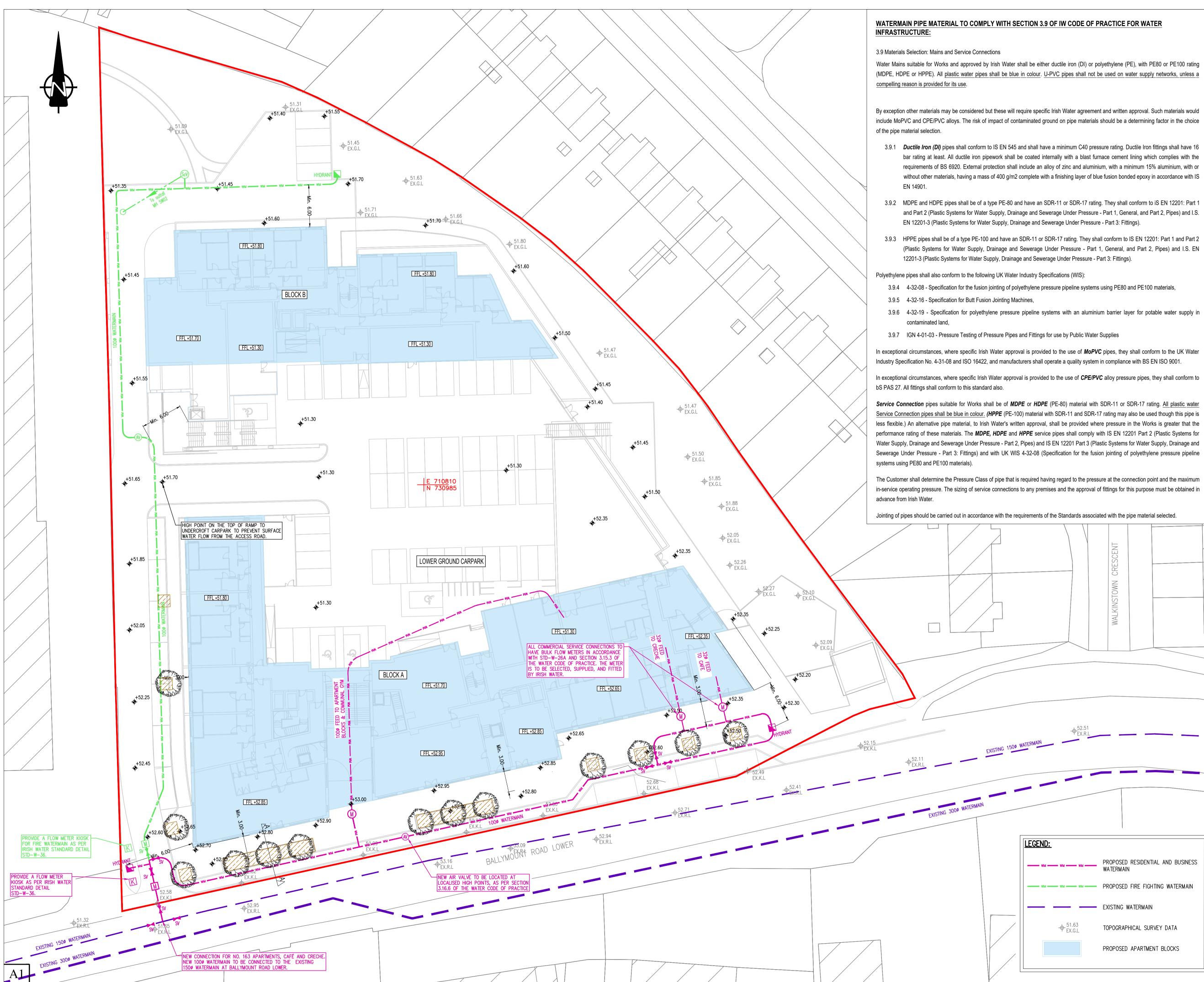



	Title	Drawn By	
OWN	RC TANK, TRENCH &	РВ	KAVANAGH
30011	ING TANK, INCLUSING	Designed By	CONSULTING ENGINEERS
IT	MANHOLE	PB	Unit F3, Block F, Calmount Park
		Checked By	Calmount Avenue, Dublin 12. D12 PX28
IENT	DETAILS	DOS	E-mail: reception@kavanaghburke.ie
	DETAILO	Scales @ A1	Tel: 01 450 0694
	Issue	As indicated	Project - Originator - Volume - Level - Type - Role - Number Revision
N MONTANE PROP. LTD	PRELIMINARY	Date	D1752-KB-XX-XX-DR-C-0002 P3
		01.11.22	




ROOF REF.	ROOF AREA (m²)	GREEN AREA
A1 A2 A3 A4	1,079 908 99 119	758 731 –
BLOCK A SUBTOTAL	2,205	1,48
B1 B2 B3 B4 B5 B6 B7 B8	202 391 75 78 161 76 132 30	133 272 51 57 59 45 82 15
BLOCK B SUBTOTAL	1,145	714
PODIUM	1,465	505





	This drawing should not be scaled. Dimensions to be verified on site. Any discrepancies should be referred to the Engineer prior to work being put in hand.
MENT BLOCKS	GENERAL NOTES
ROOF	
M LANDSCAPING LANDSCAPING)	
IG	
PATH	
REE PITS	
FIBRE ¢ CRECHE	
S S)	
PED AREAS	
N ROOF GREEN ROOF A (m ²) % 70%	
81% 0% 0%	
9 68% 66% 70%	
68% 73% 37% 59%	
62% 50% 62%	
34%	
n to ALU 250 Inspection Chamber. Height	
extension pieces are available	
Bauder Bitumen	
Extension Unit (60-220mm spigot) Bauder Blue Roof Vertical Outlet	P3 01.12.22 Update preliminary issue P.B DOS P2 15.11.22 PRELIMINARY. Revised to comply with SW Audit. PB DOS P1 30.09.22 PRELIMINARY PB DOS
	Status Date Description By Chk Amendments Project
	WALKINSTOWN APARTMENT DEVELOPMENT.
Bauder filter fleece Bauder DSE40 filled with Bauder mineral drain (13.5 l/m ² storage capacity)	TITE PROPOSED SUDS LAYOUT &
Buader FSM1100 protection mat Bauder PE foil	GREEN ROOF
Bauder Waterproofing system	DETAILS & CALCULATIONS
Separation membrane Insultation	WALKINSTOWN MONTANE PROPERTIES LTD
Waterproofing	KAVANAGH REBURKE
PPROVED EQUAL SYSTEM WILL BE ACCEPTABLE	Unit F3, Block F, Calmount Park Calmount Avenue, Dublin 12. D12 PX28 E-mail: reception@kavanaghburke.ie Tel: 01 450 0694
	PRELIMINARY
	Designed By PB Checked By KB Ref. Drawn By Date 01.11.22 Scales @ A1
	Project - Originator - Volume - Level - Type - Role - Number Revision D1752-KB-XX-XX-DR-C-0003 P3

WALKINSTOWN CRESCENT			
		 P2 P1	15.1 30.0
		Status	Da
			AL
		Ŵ	ΞV
		Title	

- ⊕ 52.51 EX.R.L		_

— wm ———	PROPOSED RESIDENTIAL AND BUSINESS WATERMAIN
	PROPOSED FIRE FIGHTING WATERMAIN

z			
)	TOPOGRAPHICAL	SURVEY	DATA
1		JUNVET	

EXISTING WATERMAIN

PROPOSED APARTMENT BLOCKS

This drawing should not be scaled. Dimensions to be verified on site. Any discrepancies should be referred to the Engineer prior to work being put in hand.

Watermain network and all associated works to be constructed in accordance with Irish Water "Code of Practice for Water Infrastructure" and Irish Water "Water Infrastructure Standard Details": IW-CDS-5020-1

IW-CDS-5020-3

VATERMAIN PIPE MATERIALS:

All watermain pipe materials to be in compliance with Section 3.9 of the Irish Water "Code of Practice for Water Infrastructure" Ref. IW-CDS-5020-03.

oul sewer network and all associated works o be constructed in accordance with Irish Water "Code of Practice for Wastewater Infrastructure" and Irish Water "Wastwater Infrastructure Standard Details": IW-CDS-5030-1

IW-CDS-5030-3

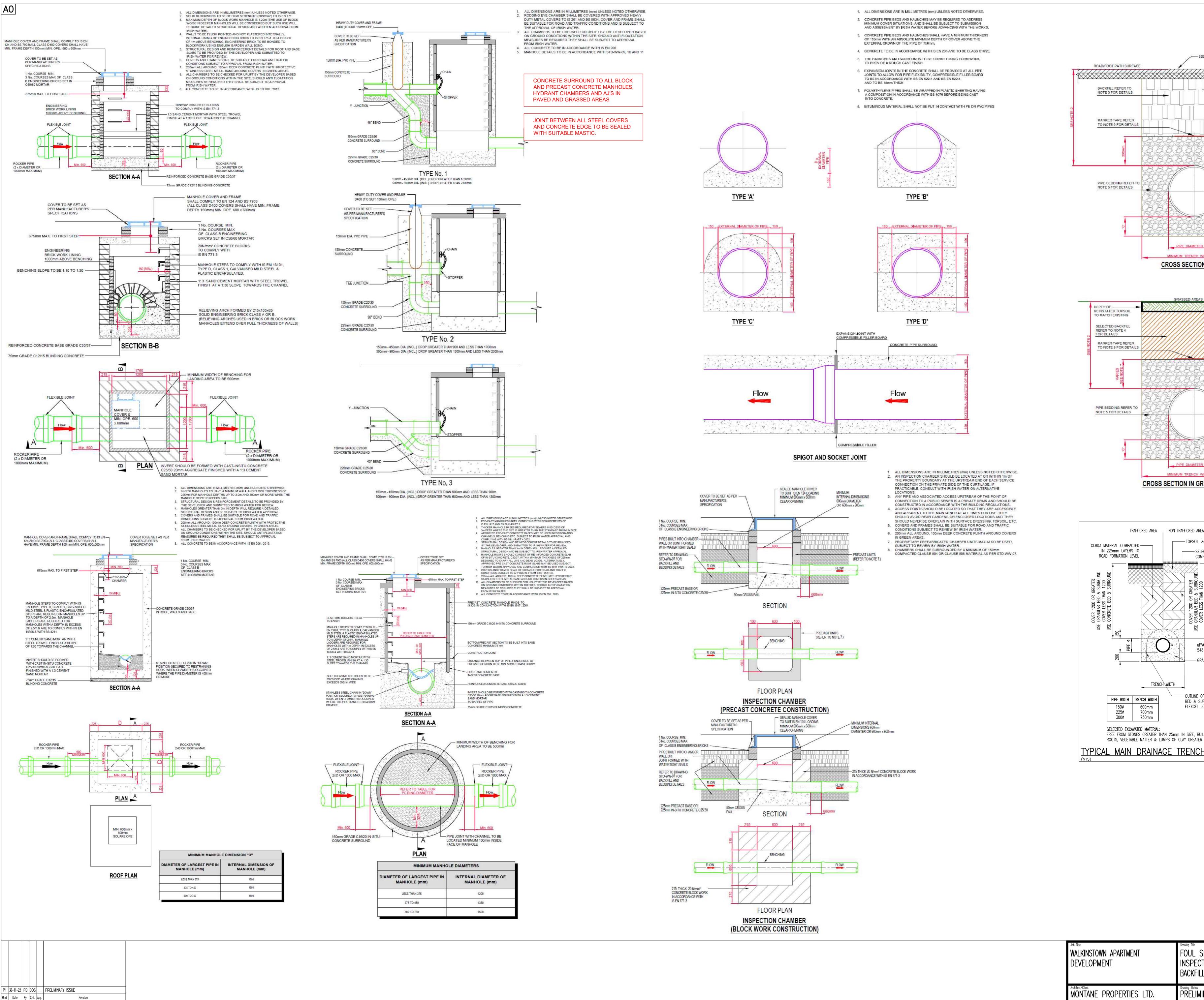
WASTEWATER PIPE MATERIALS: All sewer pipe materials to be in compliance with Section 3.13 of the Irish Water "Code of Practice for Wastewater Infrastructure" Ref. IW-CDS-5030-03.

IN ACCORDANCE WITH IRISH WATER CODE OF PRACTICE 3.15.2 ,AS THIS IS A HIGH-RISE MULTI UNIT PREMISES, WHICH REQUIREMENTS PUMPING TO UPPER FLOORS AND A SHARED SERVICE PIPE FROM A TANK/PUMP TO EACH FLOOR. PROVISION IS BE MADE FOR METERS TO BE INSTALLED IN SERVICE CUPBOARDS ALONG WITH INDIVIDUAL STOP VALVES TO ISOLATE THE EACH PROPERTY AND METER LOCATION. THE WATER SERVICE PIPE WORK IS BE ARRANGED SUCH THAT EACH UNIT CAN BE INDIVIDUALLY METERED. THE DEVELOPER WILL INSTALL THE MANIFOLD (OR PIPE INSERT) INTO THE PLUMBING SYSTEM WHICH WILL FACILITATE THE FUTURE INSTALLATION OF THE WATER METER. THE METER CUPBOARDS ARE BE LOCATED IN THE LANDLORD STAIR CORE AREAS AND INSTALLED AT A LEVEL NO HIGHER THAN 1.50M ON EACH FLOOR LEVEL AND IN A LOCATION WHERE A METER READER CAN BE COMFORTABLY MAINTAINED AND EXCHANGED (IF NECESSARY) IN THE FUTURE. FULL DETAILS OF THE WATER SERVICES ARRANGEMENT ARE SHOWN ON THE M&E DRAWINGS.

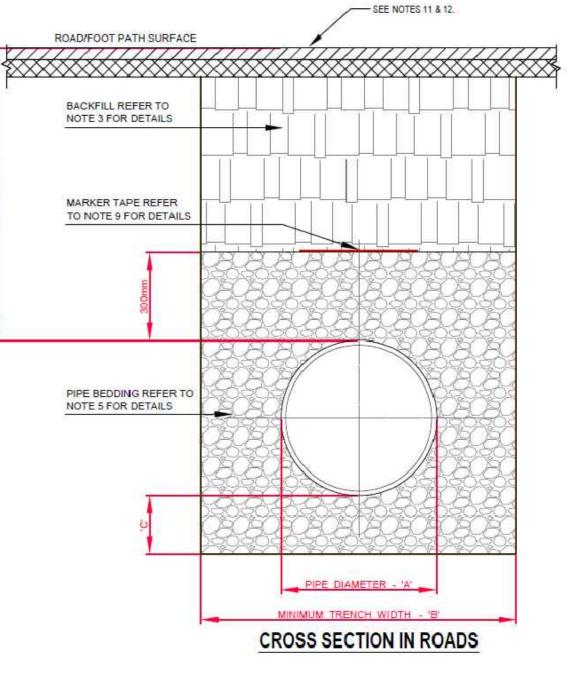
	P2	15.11.22	PRELIMINARY. Revised to comply with SW Audit.	PB	0
	P1	30.09.22	PRELIMINARY	PB	0
	Status	Date	Description	By	(
_			Amendments		

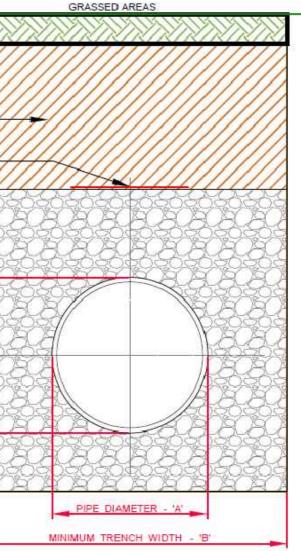
LKINSTOWN APARTMENT /ELOPMENT

WATERMAIN LAYOUT


WALKINSTOWN MONTANE PROPERTIES LTD

KAVANAGH 🚹	BURKE
CONSULTING	ENGINEERS


Unit F3, Block F, Calmount Park Calmount Avenue, Dublin 12. D12 PX28 E-mail: reception@kavanaghburke.ie Tel: 01 450 0694


PRELIMINAF	RY	
esigned By	Checked By	 KB Ref.

	PB		DOS		D1752
rawn By	PB	Date	01.11.22	Scales @ A1	1:250
Project	- Originator -	Volume - Level -	Type - Rol	e - Number	Revision
D17	752-KB-	XX-XX-[DR-C	-0005	P2

Architect/Client	
UONITANE	

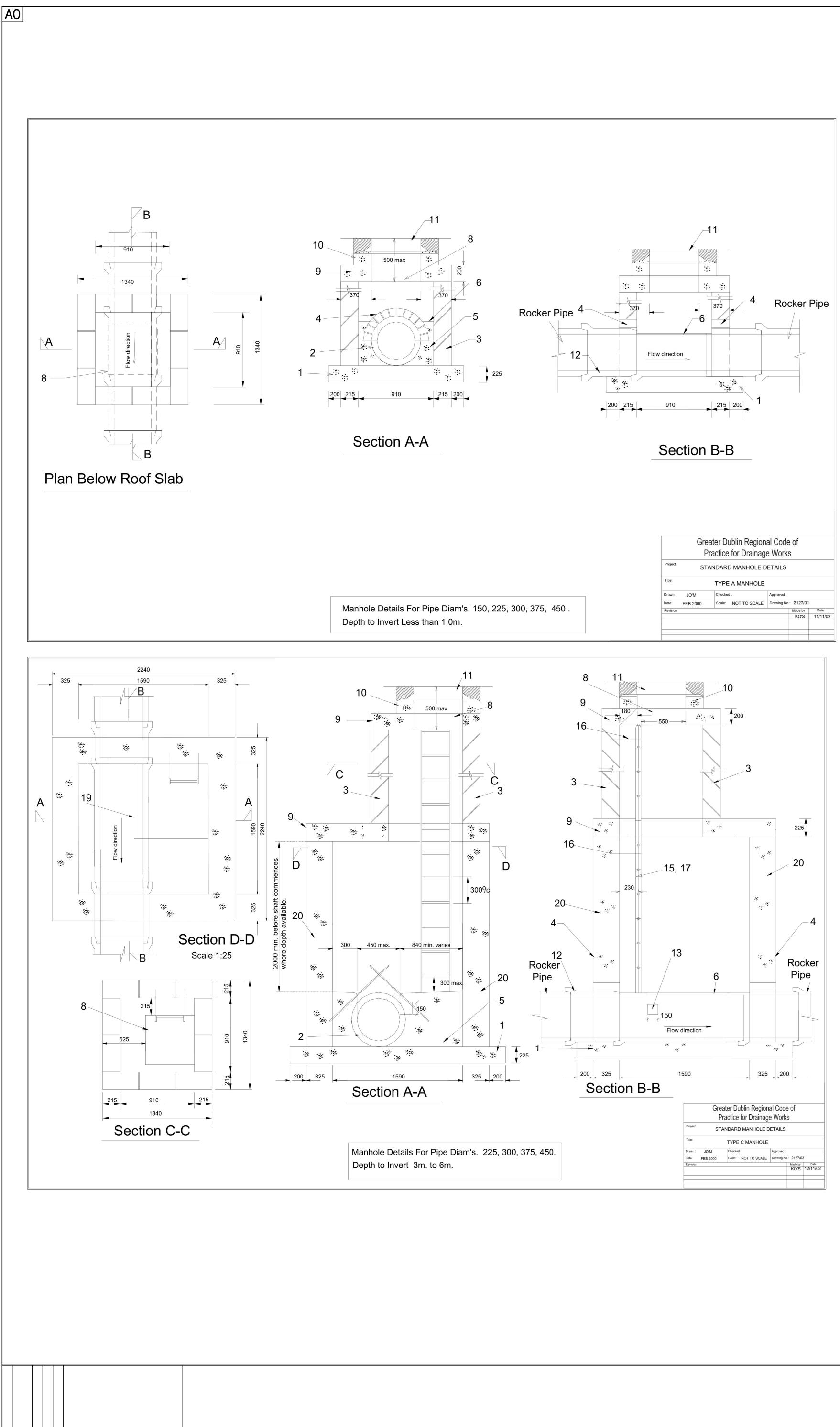
CROSS SECTION IN GRASSED AREAS

FREE FROM STONES GREATER THAN 25mm IN SIZE, BUILDING RUBBLE, TREE ROOTS, VEGETABLE MATTER & LUMPS OF CLAY GREATER THAN 75mm IN SIZE.

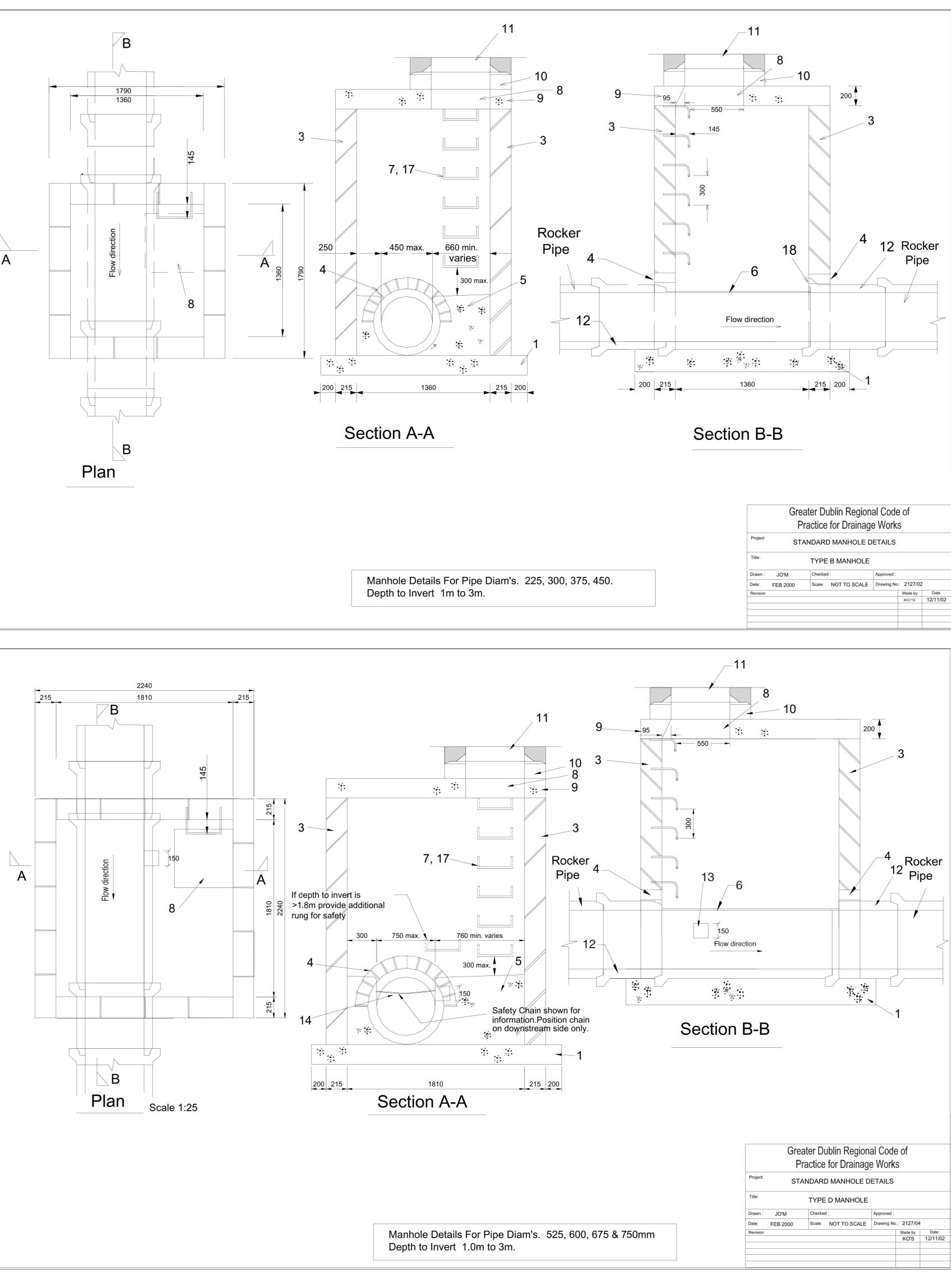
600mm

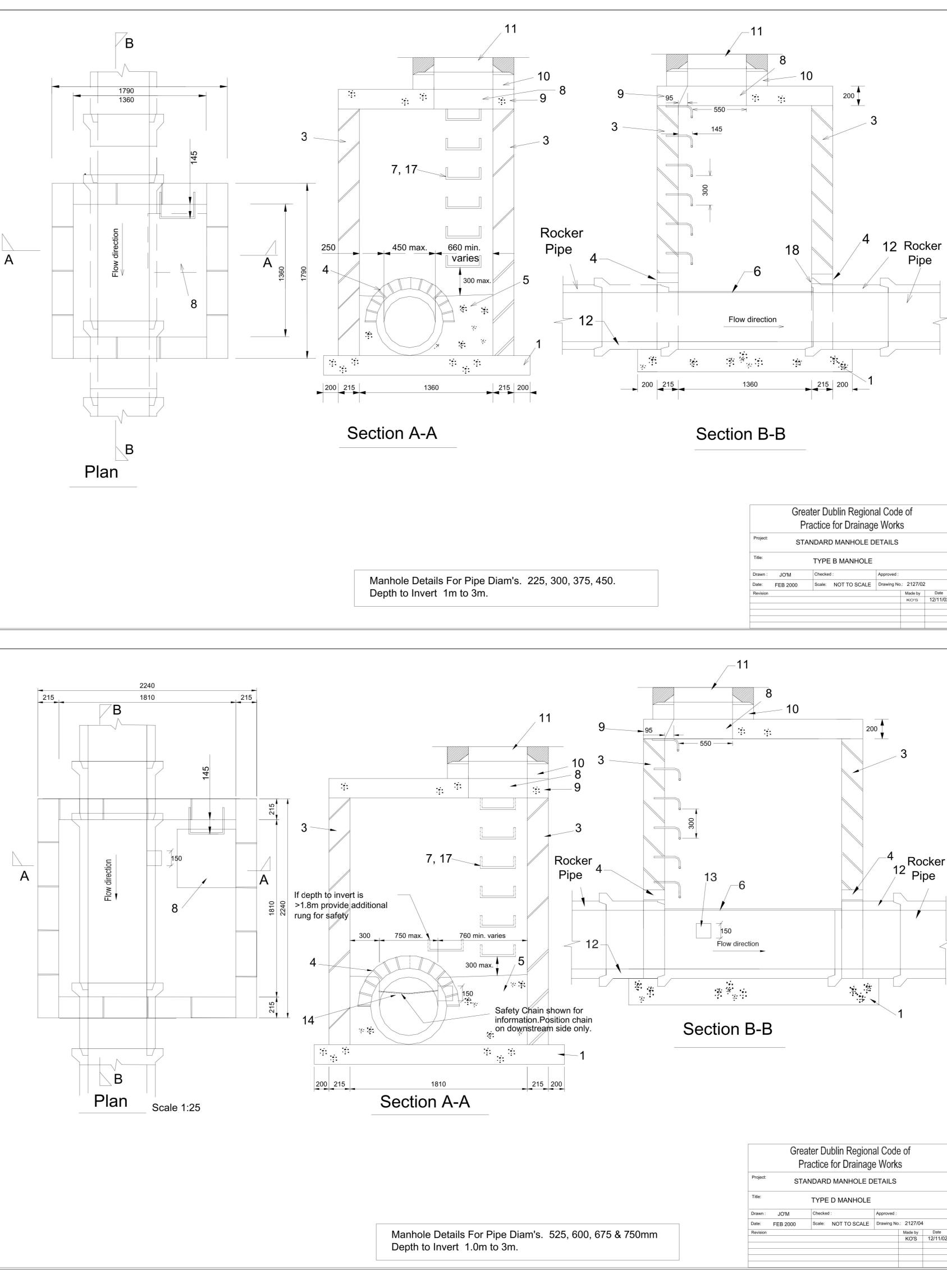
700mm

750mm


1.	ALL DIMENSIONS ARE IN MILLIMETRES (mm) UNLESS NOTED OTHERWISE
2.	THE MINIMUM DEPTH OF COVER FROM THE FINISHED SURFACE TO
	THE CROWN OF GRAVITY PIPES WITHOUT PROTECTION SHOULD BE
	AS FOLLOWS:
41	GARDENS AND PATHWAYS WITHOUT ANY

- POSSIBILITY OF VEHICULAR ACCESS DEPTH NOT LESS THAN 0.5 M. (THIS WOULD NORMALLY RELATE TO DRAINS
- IN PRIVATE PROPERTY, SHALLOW PIPES OF THIS NATURE ARE UNDESIRABLE AND SHOULD BE INSTALLED IN ACCORDANCE WITH THE CURRENT BUILDING REGULATIONS) B) DRIVEWAYS, PARKING AREAS AND YARDS WITH
- HEIGHT RESTRICTIONS TO PREVENT ENTRY BY VEHICLES WITH A GROSS VEHICLE WEIGHT IN EXCESS OF 7.5 TONNES - DEPTH NOT LESS THAN 0.75 M.
- DRIVEWAYS, PARKING AREAS AND NARROW STREETS WITHOUT FOOTWAYS (E.G. MEWS DEVELOPMENTS)
- WITH LIMITED ACCESS FOR VEHICLES WITH A GROSS VEHICLE WEIGHT IN EXCESS OF 7.5 TONNES - DEPTH NOT LESS THAN 0.9 M. D) DEPTHS OF SEWERS IN GATED ESTATES SHALL BE SIMILAR TO
- THAT OUTLINED ABOVE. E) AGRICULTURAL LAND AND PUBLIC OPEN SPACE - DEPTH NOT LESS THAN 0.9 M.
- F) OTHER HIGHWAYS AND PARKING AREAS WITH UNRESTRICTED ACCESS TO VEHICLES WITH A GROSS VEHICLE WEIGHT IN EXCESS OF 7.5 TONNES - DEPTH NOT LESS THAN 1.2m. CLAUSE 804 / 808 MATERIAL IN ACCORDANCE WITH THE NATIONAL ROADS AUTHORITY SPECIFICATION FOR ROAD WORKS IS TO BE USED AS
- BACKFILL MATERIAL WHERE THE SEWER MAIN IS LOCATED IN ROADS. FOOTPATHS OR WHEN THE NEAREST PART OF THE TRENCH IS WITHIN 1m OF THE PAVED EDGE OF THE ROADWAY, CLAUSE 804 / 808 IS TO BE COMPACTED AS PER CLAUSE 802 OF THE NATIONAL ROADS AUTHORIT SPECIFICATION FOR ROAD WORKS, CLAUSE 808 IS TO BE USED WITHIN 500mm OF CEMENT BOUND MATERIALS, CONCRETE PAVEMENTS, CONCRETE STRUCTURES OR CONCRETE PRODUCTS. OTHERWISE CLAUSE 804 MAY BE USED. ALTERNATIVE BACKFILL MATERIAL TO THAT DESCRIBED ABOVE (CLAUSE 804 OR CLAUSE 808) OF THE PIPE TRENCH WILL ONLY BE ALLOWED BY IRISH WATER WHERE THE ROADS AUTHORITY IN WHOSE FUNCTIONAL AREA THE DEVELOPMENT IS LOCATED, PROVIDES WRITTEN APPROVAL TO THE DEVELOPER TO THE USE SUCH ALTERNATIVE
- 4. SELECTED EXCAVATED MATERIAL MAY BE USED IN GREEN-FIELD AREAS ABOVE GRANULAR PIPE SURROUND MATERIAL SUBJECT TO REVIEW BY IRISH WATER. PIPE BEDDING SHALL COMPLY WITH WIS 4-08-02 AND IGN 4-08-01 GRANULAR MATERIAL SHALL BE 14mm TO 5mm GRADED
- AGGREGATE OR 10mm SINGLE SIZED AGGREGATE IS EN 13242. CONCRETE BED, HAUNCH & SURROUND, WHERE REQUIRED, SHALL BE TO STD-WW-08. IN SOFT GROUND CONDITIONS (CBR < 5) THE MATERIAL SHOULD BE EXCAVATED AND DISPOSED OF IN ACCORDANCE WITH THE WASTE MANAGEMENT ACT AND CLAUSE 804 / 808 MATERIAL IN ACCORDANCE WITH THE NATIONAL ROADS AUTHORITY SPECIFICATION FOR ROAD WORKS SHALL REPLACE THE EXCAVATED MATERIAL WRAPPED IN GEO-TEXTILE WRAPPING. ALTERNATIVELY, SPECIAL PIPE SUPPORT ARRANGEMENTS, INCLUDING PILING ETC. MAY BE REQUIRED WHERE THE DEPTH OF SOFT MATERIAL IS EXCESSIVE. SUCH ARRANGEMENTS SHALL BE SUBJECT TO ASSESSMENT BY IRISH WATER BEFORE
- ADVANCING WITH THE WORK. IN GREEN FIELD AREAS, TYPE B BACKFILL (SELECTED EXCAVATED MATERIAL) WILL BE ALLOWED ABOVE THE SIDE HAUNCH GRANULAR MATERIAL IN THE CASE OF RIGID PIPES. A GRANULAR SURROUND OF A MINIMUM DEPTH OF 150mm ABOVE THE CROWN OF THE PIPE IS REQUIRED FOR FLEXIBLE PIPES , AND TYPE B MATERIAL MAY BE USED AS BACKFILL ABOVE THIS. ALL RISING MAINS IN GREENFIELD AREAS SHALL HAVE A MINIMUM COVER OF 300mm OF GRANULAR MATERIAL
- ABOVE THE EXTERNAL CROWN OF THE PIPE. PIPES SHALL NOT BE SUPPORTED ON STONES, ROCKS OR ANY HARD OBJECTS AT ANY POINT ALONG THE TRENCH. ROCK SHALL BE EXCAVATED TO A DEPTH OF 150mm BELOW THE ACTUAL DEPTH OF THE TRENCH WITH THE VOID FILLED WITH CLAUSE 804 / 808 MATERIAL IN ACCORDANCE WITH THE NATIONAL ROADS AUTHORITY SPECIFICATION FOR ROAD WORKS. THE GRANULAR MATERIAL SHALL BE LAID ABOVE THIS VOID BACKFILL MATERIAL NON DEGRADABLE MARKER TAPE SHOULD BE INSTALLED AT TOP OF
- PIPE BEDDING LAYER. IN THE CASE OF NON METAL PIPE MATERIAL, THE MARKER TAPE SHOULD INCORPORATE A TRACE WIRE WHICH IS LINKED TO FITTINGS AND TERMINATED AT THE WASTE WATER PUMPING STATION AND THE DISCHARGE MANHOLE.
- 10. TRENCH WIDTHS FOR PIPE SIZES ≤80mm MAY BE <500mm, SUBJECT TO CONSIDERATION BEING GIVEN TO THE TRENCH DEPTH, HEALTH & SAFETY & CONSTRUCTION ACCESS REQUIREMENTS. NEW ROAD CONSTRUCTION & SURFACE FINISH TO BE TO ROAD AUTHORITY REQUIREMENTS.
- EXISTING ROAD REINSTATEMENT TO COMPLY WITH CURRENT VERSION OF "GUIDELINES FOR MANAGING OPENINGS IN PUBLIC ROADS" BY THE DEPT. OF TRANSPORT, TOURISM & SPORT, OR TRANSPORT INFRASTRUCTURE IRELAND REQUIREMENTS.


PIPE DIAMETER 'A' (mm)	TRENCH WIDTH 'B' (mm)
≤ 80 RISING MAIN	SEE NOTE 10.
100	500
150	600
200	600
250	750
300	750
350	750
400	900
450	900

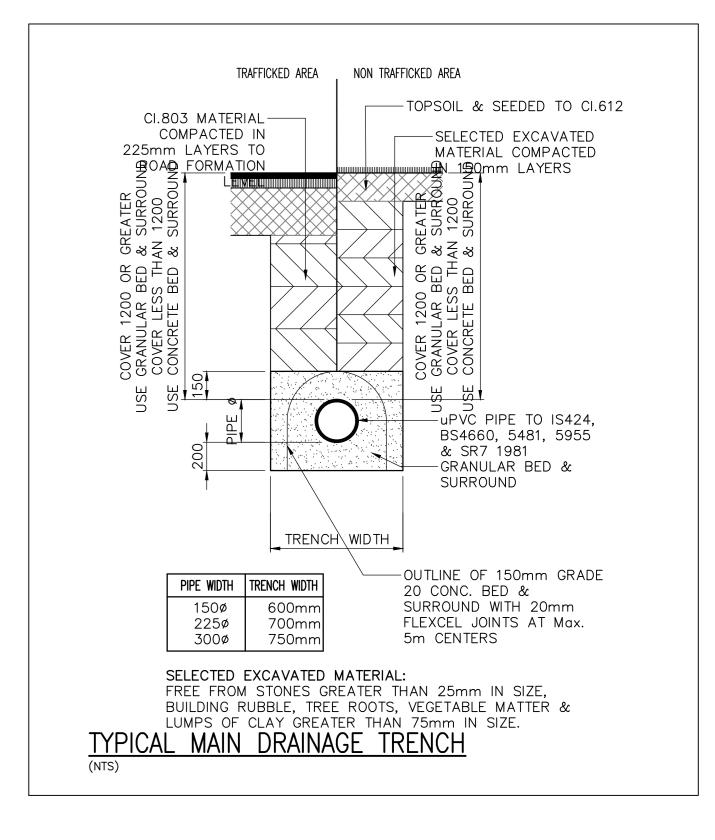

PIPE DIAMETER 'A' (mm)	DEPTH OF BEDDING 'C' (mm)
≤100	100
150 - 450	200

FOUL SEWER MANHOLES INSPECTION CHAMBER, BACKFILL AND TRENCH DETAILS	Drawn PB Checked DOS Approved Scales	KavanaghBurkconsulting engineersTel.01 - 450 0694Fax.01 - 426 4340Email: pkavanagh@kavanaghburke.ieDublin 12.		
Drawing Status PRELIMINARY	NTS Date 30-11-22	Job No. D1752	Drawing No. DR-C-0012	^{Rev.}

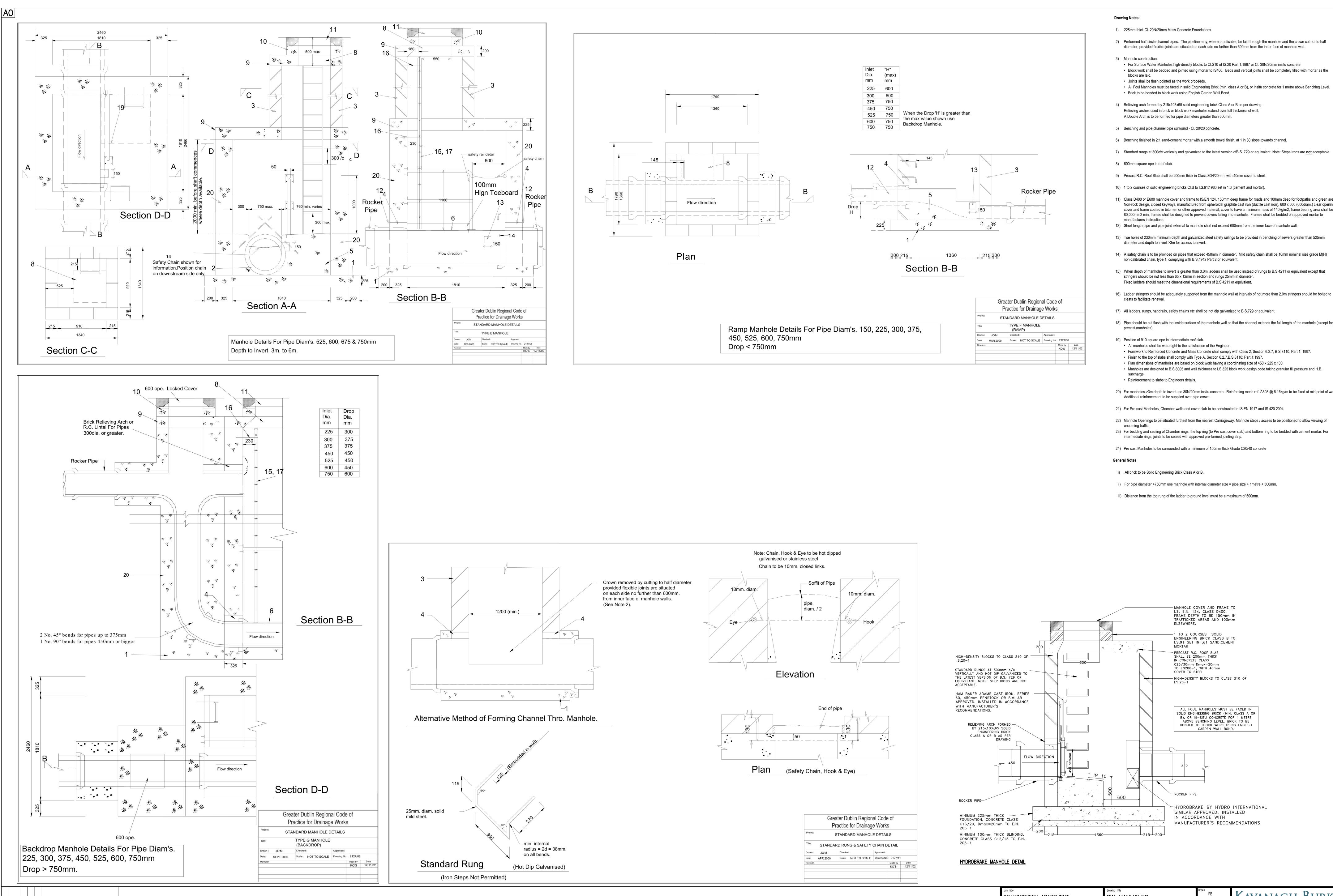
P1 30-11-22 PB DOS ___ PRELIMINARY ISSUE Mark Date By Chk. App. Revision

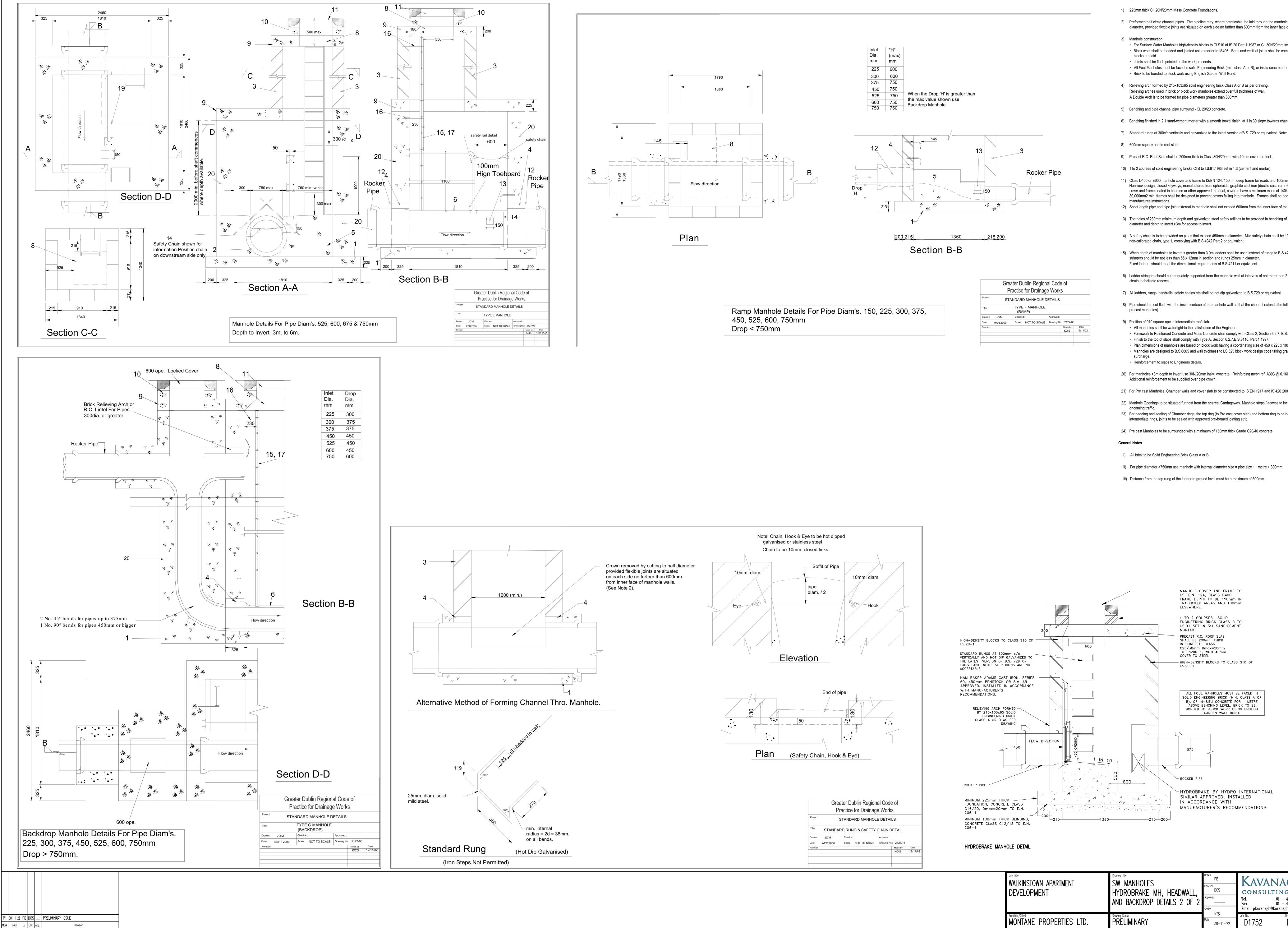
WALKINSTOWN APARTMENT DEVELOPMENT
Architect/Client PROPERTIES LTD.

Drawing Notes:


- 1) 225mm thick Cl. 20N/20mm Mass Concrete Foundations.
- 2) Preformed half circle channel pipes. The pipeline may, where practicable, be laid through the manhole and the crown cut out to half diameter, provided flexible joints are situated on each side no further than 600mm from the inner face of manhole wall.
- 3) Manhole construction. • For Surface Water Manholes high-density blocks to CI.S10 of IS.20 Part 1:1987 or CI. 30N/20mm insitu concrete. • Block work shall be bedded and jointed using mortar to IS406. Beds and vertical joints shall be completely filled with mortar as the
- blocks are laid. • Joints shall be flush pointed as the work proceeds.
- All Foul Manholes must be faced in solid Engineering Brick (min. class A or B), or insitu concrete for 1 metre above Benching Level. Brick to be bonded to block work using English Garden Wall Bond.
- 4) Relieving arch formed by 215x103x65 solid engineering brick Class A or B as per drawing. Relieving arches used in brick or block work manholes extend over full thickness of wall. A Double Arch is to be formed for pipe diameters greater than 600mm.
- 5) Benching and pipe channel pipe surround Cl. 20/20 concrete.
- 6) Benching finished in 2:1 sand-cement mortar with a smooth trowel finish, at 1 in 30 slope towards channel.
- 7) Standard rungs at 300c/c vertically and galvanized to the latest version of B.S. 729 or equivalent. Note: Steps Irons are <u>not</u> acceptable.
- 8) 600mm square ope in roof slab.
- 9) Precast R.C. Roof Slab shall be 200mm thick in Class 30N/20mm, with 40mm cover to steel.
- 10) 1 to 2 courses of solid engineering bricks CI.B to I.S.91:1983 set in 1:3 (cement and mortar).

non-calibrated chain, type 1, complying with B.S.4942 Part 2 or equivalent.


- 11) Class D400 or E600 manhole cover and frame to IS/EN 124. 150mm deep frame for roads and 100mm deep for footpaths and green areas. Non-rock design, closed keyways, manufactured from spheroidal graphite cast iron (ductile cast iron), 600 x 600 (600diam.) clear opening, cover and frame coated in bitumen or other approved material, cover to have a minimum mass of 140kg/m2, frame bearing area shall be 80,000mm2 min, frames shall be designed to prevent covers falling into manhole. Frames shall be bedded on approved mortar to manufactures instructions. 12) Short length pipe and pipe joint external to manhole shall not exceed 600mm from the inner face of manhole wall.
- 13) Toe holes of 230mm minimum depth and galvanized steel safety railings to be provided in benching of sewers greater than 525mm
- diameter and depth to invert >3m for access to invert. 14) A safety chain is to be provided on pipes that exceed 450mm in diameter. Mild safety chain shall be 10mm nominal size grade M(H)
- 15) When depth of manholes to invert is greater than 3.0m ladders shall be used instead of rungs to B.S.4211 or equivalent except that stringers should be not less than 65 x 12mm in section and rungs 25mm in diameter. Fixed ladders should meet the dimensional requirements of B.S.4211 or equivalent.
- 16) Ladder stringers should be adequately supported from the manhole wall at intervals of not more than 2.0m stringers should be bolted to cleats to facilitate renewal.
- 17) All ladders, rungs, handrails, safety chains etc shall be hot dip galvanized to B.S.729 or equivalent.
- 18) Pipe should be cut flush with the inside surface of the manhole wall so that the channel extends the full length of the manhole (except for precast manholes).
- 19) Position of 910 square ope in intermediate roof slab.
- All manholes shall be watertight to the satisfaction of the Engineer. • Formwork to Reinforced Concrete and Mass Concrete shall comply with Class 2, Section 6.2.7, B.S.8110: Part 1: 1997.
- Finish to the top of slabs shall comply with Type A, Section 6.2.7, B.S.8110: Part 1:1997.
- Plan dimensions of manholes are based on block work having a coordinating size of 450 x 225 x 100. • Manholes are designed to B.S.8005 and wall thickness to LS.325 block work design code taking granular fill pressure and H.B.
- surcharge. Reinforcement to slabs to Engineers details.
- 20) For manholes >3m depth to invert use 30N/20mm insitu concrete. Reinforcing mesh ref. A393 @ 6.16kg/m to be fixed at mid point of wall. Additional reinforcement to be supplied over pipe crown.
- 21) For Pre cast Manholes, Chamber walls and cover slab to be constructed to IS EN 1917 and IS 420 2004
- 22) Manhole Openings to be situated furthest from the nearest Carriageway. Manhole steps / access to be positioned to allow viewing of oncoming traffic.
- 23) For bedding and sealing of Chamber rings, the top ring (to Pre cast cover slab) and bottom ring to be bedded with cement mortar. For intermediate rings, joints to be sealed with approved pre-formed jointing strip.
- 24) Pre cast Manholes to be surrounded with a minimum of 150mm thick Grade C20/40 concrete


General Notes

- i) All brick to be Solid Engineering Brick Class A or B.
- ii) For pipe diameter >750mm use manhole with internal diameter size = pipe size + 1metre + 300mm.
- iii) Distance from the top rung of the ladder to ground level must be a maximum of 500mm.

Drawing Title SW MANHOLES HYDROBRAKE MH, HEADWALL, AND BACKDROP DETAILS 1 OF 2	Drawn PB Checked DOS Approved	CONSULTIN Tel. 01 -	G ENGINEERS 450 0694 426 4340 426 4340 426 4340 426 4340	
	Scales	Email: pkavanagh@kavan	J	
Drawing Status PRELIMINARY	NTS Date 30-11-22	Job No. D1752	Drawing No. DR—C—0013	^{Rev.}

- 2) Preformed half circle channel pipes. The pipeline may, where practicable, be laid through the manhole and the crown cut out to half diameter, provided flexible joints are situated on each side no further than 600mm from the inner face of manhole wall.
- For Surface Water Manholes high-density blocks to CI.S10 of IS.20 Part 1:1987 or CI. 30N/20mm insitu concrete.
- All Foul Manholes must be faced in solid Engineering Brick (min. class A or B), or insitu concrete for 1 metre above Benching Level.

- 7) Standard rungs at 300c/c vertically and galvanized to the latest version of B.S. 729 or equivalent. Note: Steps Irons are not acceptable.

- 11) Class D400 or E600 manhole cover and frame to IS/EN 124. 150mm deep frame for roads and 100mm deep for footpaths and green areas. Non-rock design, closed keyways, manufactured from spheroidal graphite cast iron (ductile cast iron), 600 x 600 (600diam.) clear opening, cover and frame coated in bitumen or other approved material, cover to have a minimum mass of 140kg/m2, frame bearing area shall be 80,000mm2 min, frames shall be designed to prevent covers falling into manhole. Frames shall be bedded on approved mortar to

- 14) A safety chain is to be provided on pipes that exceed 450mm in diameter. Mild safety chain shall be 10mm nominal size grade M(H)
- 15) When depth of manholes to invert is greater than 3.0m ladders shall be used instead of rungs to B.S.4211 or equivalent except that
- 16) Ladder stringers should be adequately supported from the manhole wall at intervals of not more than 2.0m stringers should be bolted to
- 18) Pipe should be cut flush with the inside surface of the manhole wall so that the channel extends the full length of the manhole (except for
- Formwork to Reinforced Concrete and Mass Concrete shall comply with Class 2, Section 6.2.7, B.S.8110: Part 1: 1997.
- Manholes are designed to B.S.8005 and wall thickness to LS.325 block work design code taking granular fill pressure and H.B.
- 20) For manholes >3m depth to invert use 30N/20mm insitu concrete. Reinforcing mesh ref. A393 @ 6.16kg/m to be fixed at mid point of wall.
- 22) Manhole Openings to be situated furthest from the nearest Carriageway. Manhole steps / access to be positioned to allow viewing of
- 23) For bedding and sealing of Chamber rings, the top ring (to Pre cast cover slab) and bottom ring to be bedded with cement mortar. For

Drawing Title SW MANHOLES HYDROBRAKE MH, HEADWALL, AND BACKDROP DETAILS 2 OF 2	Drawn PB Checked DOS Approved Scales	CONSULTIN Tel. 01 -	AGH BUR G ENGINEERS - 450 0694 Unit G3, Calmou - 426 4340 Ballymount, aghburke.ie Dublin 12.	
Drawing Status PRELIMINARY	NTS Date 30-11-22	Job No. D1752	Drawing No. DR-C-0014	^{Rev.}

JBA Project Code Contract

Prepared by

Client

Subject

2022s1224 Stage 2 SWA Walkinstown Apartment Development, Dublin 12 Kavanagh Burke Leanne Leonard Stormwater Audit Stage 2 Report

Revision History

Issue	Date	Status	Issued to
S3-P01	06/12/2022	Final issue	Kavanagh Burke
A4-C01	13/12/2022	S2.3.1	Kavanagh Burke

1 Introduction

JBA Consulting have been contracted by Kavanagh Burke Consulting Engineers (KB) to undertake a Stage 2 SW Audit of the surface water drainage design for the proposed Walkinstown Apartment Development on behalf of Montane Developments (Irl) Ltd. Although the development falls within the South Dublin County Council district, this audit has been completed in accordance with Dún Laoghaire Rathdown County Council's (DLRCC) Stormwater Audit Procedure (Rev 0, Jan 2012) as the only available SW Audit guidance. This procedure is set out below.

Stage 2 – Detailed Design Stage – carried out at the Detailed Design stage, prior to commencement of construction, to check the detail of all the SUDS elements and to ensure that any necessary amendments have been included in the Construction drawings. The Stage 2 Audit report must be submitted to [South Dublin Co Co] for approval prior to commencement of the works. All recommendations shall be complied with, unless otherwise agreed in writing with [South Dublin Co Co]. It should be noted that any proposed changes to the approved scheme must be submitted to [South Dublin Co Co] for formal compliance. Any planning conditions can only be discharged by the Planning Department.

The development has a conditional grant of planning permission (ABP-311190-21) dated 22 Jun 2022 and condition 11 relates to the disposal of storm water and is set out below;

www.jbaconsulting.ie www.jbaconsulting.com www.jbarisk.com www.jbaenergy.com

JBA Project Code

Contract

Client Prepared by Subject 2022s1224 Stage 2 SWA Walkinstown Apartment Development, Dublin 12 Kavanagh Burke Leanne Leonard Stormwater Audit Stage 2 Report

11. Water supply and drainage arrangements, including the attenuation and disposal of surface water, shall comply with the requirements of the planning authority for such works and services. Prior to commencement of development the developer shall submit the following details to the Planning Authority for written agreement:

- (i) Revised surface water drainage calculations, conveyance and attenuation details (to include SUDS details and details of flow control device) to meet the surface water storage requirements of the development. The maximum discharge rate for surface water shall be Qbar rural or c. 2 litres per second.
- (ii) Prior to commencement of development a Stage 2 Detailed Design Stage Storm Water Audit shall be submitted to the Planning Authority for written agreement.
- Upon Completion of the development, a Stage 3 Completion
 Stormwater Audit to demonstrate Sustainable Urban Drainage
 System measures have been installed and are working as
 designed and that there has been no misconnections or damage
 to storm water drainage infrastructure during construction, shall
 be submitted to the planning authority for written agreement.

Reason: In the interest of public health and surface water management.

1.1 Report Structure

The Feedback Form in Appendix A identifies queries raised in this report which are to be answered by the Design Engineers. Once an 'Acceptable' status is achieved for each query the audit is deemed to be closed out.

The results of the audit are set out hereunder, where items raised in the feedback form are shown in bold within this report.

1.2 Relevant Studies and Documents

The following documents were considered as part of this surface water audit:

- Greater Dublin Strategic Drainage Strategy (GDSDS);
- Greater Dublin Regional Code of Practice for Drainage Works;
- The SUDs Manual (CIRIA C753).
- South Dublin County Development Plan 2022-2028
- BRE Digest 365

The documentation provided by Kavanagh Burke for review is listed below;

JBV-JBAI-02-XX-RP-C-0001-A4-C01-SWA_Report

www.jbaconsulting.ie www.jbaconsulting.com www.jbarisk.com www.jbaenergy.com

JBA

JBA

nager

JBA

JBA Project Code

Contract

Client Prepared by Subject 2022s1224 Stage 2 SWA Walkinstown Apartment Development, Dublin 12 Kavanagh Burke Leanne Leonard Stormwater Audit Stage 2 Report

- D1752 Drainage Report P1.pdf
- D1752-KB-XX-XX-DR-C-0001-Drianage & Watermain Layout_RevP1.pdf
- D1752-KB-XX-XX-DR-C-0002-Attenuation Tank Details_RevP1.pdf
- D1752-KB-XX-XX-DR-C-0003-SuDS Layout_RevP1.pdf
- D1752-KB-XX-XX-DR-C-0004-SuDS Details_RevP1.pdf
- Grant.pdf

Planning Stage SW Package (for compliance):

- DR-C-10007 Rev P03 Proposed SUDS Measures.pdf
- DR-C-10008 Rev P01 Bio Retention And Tree Pit Details & Sections .pdf
- DR-C-10009 Rev P04 Proposed Combined Drainage Layout.pdf
- DR-C-10010 Rev P08 Proposed Watermain Layout.pdf
- DR-C-10011 Rev P08 Proposed Foul Water Layout.pdf
- DR-C-10012 Rev P09 Proposed Surface Water Layout.pdf
- DR-C-10013 Rev P07 Exceedance Scenario Layout.pdf
- DR-C-10014 Rev P04 Proposed Foul Longitudinal Sections.pdf
- DR-C-10015 Rev P03 Proposed Surface Longitudinal Sections.pdf
- DR-C-10016 Rev P01 Standard Watermain Details.pdf
- DR-C-10017 Rev P01 Standard Manhole Details.pdf
- DR-C-10018 Rev P01 Standard Trench Details.pdf
- DR-C-10019 Rev P01 Standard Gully & Kerb Details.pdf
- DR-C-10020 Rev P01 Standard Attenuation Tank Details.pdf
- Engineering Services Report Addendum Response to PA Opinion.pdf
- MMOS Rev. 04 Walkinstown Aparts Engineering Services Report .pdf

1.3 Key Considerations and Benefits of SuDS

The key benefits and objectives of SuDS considered as part of this audit and listed below include:

- Water Quantity
- Water Quality
- Amenity
- Biodiversity

Which can be achieved by:

- Storing runoff and releasing it slowly (attenuation)
- Harvesting and using the rain close to where it falls
- Allowing water to soak into the ground (infiltration)
- Slowly transporting (conveying) water on the surface
- Filtering out pollutants
- Allowing sediments to settle out by controlling the flow of the water

1.3.1 SuDs Management Train

A SuDs Management Train is a robust pollutant removal strategy. The treatment train can comprise four stages:

- 1. Prevention
- 2. Source Control
- 3. Site Control
- 4. Regional control

JBV-JBAI-02-XX-RP-C-0001-A4-C01-SWA_Report

JBA

JBA

nagen

JBA

Page 3 of 9

JBA Project Code

Contract

Client Prepared by Subject 2022s1224 Stage 2 SWA Walkinstown Apartment Development, Dublin 12 Kavanagh Burke Leanne Leonard Stormwater Audit Stage 2 Report

2 Proposed Development

The site is a brownfield site with existing warehousing and associated small outbuildings and plant to be demolished. The site is stated to be 0.93 hectares and is accessed from the Ballyfermot Road to the South. The location of the site is shown in Figure 1 below.

Figure 1- Site Location

The residential development consists of 171 apartments across two buildings, referred to as Building A and Building B, a creche and café and over a shared basement. Building A is split height ranging from 4 to 8 storeys. Building B is also split height ranging from 2 to 6 storeys. There is a natural gradient of approx. 2m across the site, with a flat central area. There is an existing tree line to the East and North of the site, which will be retained and enhanced with new planting in select locations.

2.1 Review of SW Drainage Proposals

2.1.1 Stage 1 SW Audit

It is not clear whether a Stage 1 SW Audit was undertaken at planning stage as it is not a requirement of South Dublin City Council. Completion of Stage 2 and Stage 3 Audits were included as planning conditions by An Bord Pleanála.

KB to confirm whether or not a Stage 1 SW Audit was undertaken.

2.1.2 Site Characteristics

No details of site investigation have been provided or referenced so it is unclear if any investigation has been carried out. A soil type 2 has been assumed in the Qbar calculations which matches that shown on the uksuds website.

```
JBV-JBAI-02-XX-RP-C-0001-A4-C01-SWA_Report
```

www.jbaconsulting.ie www.jbaconsulting.com www.jbarisk.com www.jbaenergy.com

JBA

JBA Project Code

Contract

Client Prepared by Subject 2022s1224 Stage 2 SWA Walkinstown Apartment Development, Dublin 12 Kavanagh Burke Leanne Leonard Stormwater Audit Stage 2 Report

Qbar for the site was calculated as 1.86 l/s using an impermeable area of 0.931 ha and a SAAR of 771mm. KB have adopted a discharge rate of 2.0 l/s, which is greater than Qbar and the 2 l/s/ha (1.9 l/s) limit. However, the difference is minimal and unlikely to significantly impact the attenuation calculations.

KB to advise whether any SI has been carried out and if so, provide details of same.

However, the discharge rate should be agreed with SDCC.

2.1.3 SuDS Measures Considered

SuDS Technology	Comments
Green/Blue Roofs	Green roofs have been proposed to all apartment blocks.
	Build up details are provided on drawing DR-C-0003
Swale, Filter Drain, Infiltration Trench	Swales and French drains are proposed along the north and west of the development to both convey and store runoff prior to entering the attenuation tank.
THENOT	It is not clear whether a permeable or impermeable membrane will be provided to the filter drains and swale as typical details have not been provided.
	KB to provide typical details through filter drains and swales and clarify whether a permeable or impermeable liner is proposed to the permeable paving.
Tree Pits, Bioretention	Tree pits are proposed to the south of the development however their proposed locations appear to clash with the proposed watermain.
Areas, Rain Gardens	A permeable geotextile has been proposed to the tree pits. Although infiltration is encouraged for interception benefits, groundwater monitoring should be carried out to ensure that infiltration does not occur within 1m of the winter groundwater table.
	KB to undertake a clash detection exercise to ensure that the minimum separation distances as set out by Irish Water are achieved.
	KB to advise whether groundwater monitoring has taken place and confirm that infiltration does not occur within 1m of the winter groundwater table.
Permeable Paving	Permeable paving is proposed to car parking spaces and a permeable footpath has been proposed across the public green area, but no build up details have been provided.
	It is not clear whether a permeable or impermeable membrane will be provided to the permeable paving
	KB to provide details for proposed permeable paving.
	KB to clarify whether a permeable or impermeable liner is proposed to the permeable paving.
Soakaways	None proposed
Detention Basins, Retention Ponds, Stormwater Wetlands	None proposed
Rainwater	None proposed.

JBV-JBAI-02-XX-RP-C-0001-A4-C01-SWA_Report

www.jbaconsulting.ie www.jbaconsulting.com www.jbarisk.com www.jbaenergy.com

JBA

JBA

anader

JBA

JBA Project Code Contract Client

Prepared by Subject 2022s1224 Stage 2 SWA Walkinstown Apartment Development, Dublin 12 Kavanagh Burke Leanne Leonard Stormwater Audit Stage 2 Report

Harvesting	
Petrol Interceptor	Proposed upstream of the attenuation tank.
Attenuation	2 nr. RC attenuation tanks with a combined capacity of 599m3 shown on drawing DR— 0001. The planning drawings proposed a StormTech attenuation structure, and it is not clear why this has changed or if it has been agreed with SDCC.
	KB to advise why RC tanks are now proposed and advise whether this has been discussed and agreed with SDCC.
Other	N/A

2.1.4 Review of drainage design and drawings

The Planning drawings proposed StormTech attenuation structures whereas the tender drawings propose RC tanks. Typically, RC tanks should only be used where no other solution exists and they do not provide any water quality benefits, whereas the Isolator Row in the StormTech units provides some benefits.

It is not clear from the drainage layout, how run-off will be directed to the tree pits

KB to advise why RC tanks are now proposed and whether this has been discussed with SDCC.

KB to clarify how run-off will be directed towards the tree pits.

2.1.5 FLOW Calculation

The site area is stated to be 0.903 ha but just 0.821 ha appears to have been modelled in the Flow calculations. It is not clear if reduced runoff factors have been used or whether some areas are deemed not to contribute.

If reduced runoff factors have been applied, it is typically recommended to use Cv factors of 1.0 to avoid "double counting" the reduction factors. Reduced Cv values of 0.75 and 0.84 (software defaults) have been used in the model.

The network has been sized for the 2-year period however, rainfall intensities have been limited to 50mm/hr. As flooding is not shown up to the 100-year event this is not expected to cause any issues.

A 20% allowance has applied to all return periods modelled to account for climate change.

The drainage layout drawing states that 599m3 is provided in the attenuation tanks but a volume of 614m3 has been provided within the model. While the simulation results would suggest that a volume of 599m3 is likely to be sufficient, the model should be updated to reflect the actual site proposals to ensure compliance.

KB to advise if reduced run-off factors have been applied to the design.

If reduced runoff factors have been used, KB to consider increasing the Cv values in the model to 1.0.

KB to update the model to reflect the actual storage volume provided.

2.1.6 Interception/Treatment

Interception of runoff is intended to prevent any runoff for small rainfall events which are less than 5mm

JBV-JBAI-02-XX-RP-C-0001-A4-C01-SWA_Report

JBA Project Code2022s1224ContractStage 2 SWA Walkinstown Apartment Development, Dublin
12ClientKavanagh BurkePrepared byLeanne LeonardSubjectStormwater Audit Stage 2 Report

(and up to 10mm if possible). Treatment of 15mm is required if interception is not provided.

Table 24.6 of the CIRIA manual provides indication of deemed to satisfy criteria and it is considered that this should be complied with. All sources of runoff should also be intercepted where possible. A high level of Interception provided for some parts of the site is not to be considered as adequate compensation for a low degree of interception provision for other locations. Compliance is required for the whole site, or at least for road/paved areas, for it to be considered effective. Interception mechanisms are based on runoff retention. This can be achieved using rainwater harvesting or using soil storage and evaporation. Either infiltration or transpiration rates can dispose of the runoff from minor events to enable the next event to be captured.

S4 (2) of the Kavanagh Burke Drainage Report calculates a total interception volume requirement of 38.9m3 based on 5mm interception across the whole site. S 4 (4) notes that this volume will be provided by the green roofs. This analysis is incorrect and does not comply with the concept of interception. Runoff from all areas should pass through at least one SuDS measure and overcompensation in one area cannot remove the requirement in another area. Interception proposals should be in compliance with Table 24.6 of the CIRIA SuDS Manual.

Some gullies are shown to discharge directly to the piped network, suggesting that no interception takes place at these locations.

KB to advise how all areas are intercepted in accordance with Table 24.6 of the CIRIA SuDS Manual.

KB to review the locations of all gullies to ensure that all runoff is intercepted prior to entering the network.

2.1.7 Exceedance Flows

The Planning drawings show a sump pump and rising main arrangement for exceedance events but these have not been included in the tender drawings.

KB to advise how exceedance flows will be managed?

2.2 Health & Safety and Maintenance Issues

The proposed drainage system comprises SuDS devices, traditional road gullies, manholes, attenuation systems, a petrol interceptor, pumped flow controls and suspended/underground pipes. These elements are considered acceptable from a Health & Safety perspective once supplier/manufacturers guides are followed and complied with during the detailed design, construction and operation.

Optimum performance of the SUDs treatment train is subject to the frequency of maintenance provided. It is recommended that a maintenance regime be adopted.

It is recommended that the petrol interceptors be fitted with an audible high-level silt and oil alarm for maintenance and safety purposes. Regular inspection and maintenance is recommended for the petrol interceptor.

Please note that silt and debris removed from the petrol interceptor during maintenance will be classified as contaminated material and should only be handled and transported by a suitably licensed contractor and haulier and disposed of at a suitably licensed landfill only.

www.jbaconsulting.ie www.jbaconsulting.com www.jbarisk.com www.jbaenergy.com

JBA

JBA

JBA Project Code2022s1224ContractStage 2 SWA Walkinstown Apartment Development, Dublin
12ClientKavanagh BurkePrepared byLeanne LeonardSubjectStormwater Audit Stage 2 Report

2.3 Audit Conclusions

This report outlines the review of the initial submission by Consulting Engineers. JBA comments are also included in the Audit Feedback Form in Appendix A. This Feedback Form shows the audit trail and the responses from the designer and additional data provided. All queries have been satisfactorily addressed, with some items requiring consultation and acceptance of proposed assumptions/approaches with SDCC. The audit is therefore, considered closed.

2.3.1 Post Audit Note

Updated drainage layout (D1752-KB-XX-XX-DR-C-0001-Drainage Layout_RevP3) and attenuation tank details (D1752-KB-XX-XX-DR-C-0002-Attenuation Tank Details_RevP3) drawings were issued on 13th December 2022. These showed replacement of the previously proposed split RC attenuation tank with a singular RC attenuation tank. The plan area has increased marginally, from 322m2 to 331m2, whereas the invert level and top of tank level have not changed. This change is not expected to have an impact on the design and the feedback form remains valid. The audit is therefore, considered closed.

2.4 Audit Report sign Off

Leanne Leonaed

Audit Report Prepared by:

Leanne Leonard BEng (Hons) MIEI Senior Engineer

Organ-

Approved by:

Chris Wason BEng, CEng MICE Principal Engineer

Note:

JBA Consulting Engineers & Scientists Ltd. role on this project is as an independent reviewer/auditor. JBA Consulting Engineers & Scientists hold no design responsibility on this project. All issues raised and comments made by JBA are for the consideration of the Design Engineer. Final design, construction supervision, with sign-off and/or commissioning of the surface water system so that the final product is fit for purpose with a suitable design, capacity and life-span, remains the responsibility of the Design Engineers.

JBV-JBAI-02-XX-RP-C-0001-A4-C01-SWA_Report

JBA Project Code

Contract

Client Prepared by Subject 2022s1224 Stage 2 SWA Walkinstown Apartment Development, Dublin 12 Kavanagh Burke Leanne Leonard Stormwater Audit Stage 2 Report

Appendix A – Audit Feedback Form

JBV-JBAI-02-XX-RP-C-0001-A4-C01-SWA_Report

www.jbaconsulting.ie www.jbaconsulting.com www.jbarisk.com www.jbaenergy.com

JBA Consultin	g Stormwater Audit - Stage 2 Feedback Form			
Project: Date:	St 2 SWA Walkinstown Apartment Development, Dublin 12 06/12/2022 (S4-P03)			
	Leanne Leonard			
Project Number: Item No.	JBA Review Comment	Comment/Clarification Request/Suggested Mitigation	Response from Client/Client Representative	Acceptable / Not Acceptable
	07/10/2022	07/10/2022	16/11/2022	
	Reference Documents B1752 Drainage Report P1.pdf B1752-KB-XX-XX-DR-C-0001-Drianage & Watermain Layout_RevP1.pdf B1752-KB-XX-XX-DR-C-0002-Attenuation Tank Details_RevP1.pdf B1752-KB-XX-XX-DR-C-0003-SuDS Layout_RevP1.pdf B1752-KB-XX-XX-DR-C-0004-SuDS Details_RevP1.pdf BR-C-10010 Rev P03 - Proposed SUDS Measures.pdf BR-C-10010 Rev P04 - Proposed Foul Water Layout.pdf BR-C-10011 Rev P08 - Proposed Surface Water Layout.pdf BR-C-10012 Rev P09 - Proposed Surface Water Layout.pdf BR-C-10013 Rev P07 - Exceedance Scenario Layout.pdf BR-C-10014 Rev P04 - Proposed Foul Longitudinal Sections.pdf BR-C-10015 Rev P03 - Proposed Surface Longitudinal Sections.pdf BR-C-10016 Rev P01 - Standard Matermain Details.pdf BR-C-10017 Rev P01 - Standard Trench Details.pdf			
1	Engineering Services Report Addendum Response to PA Opinion.pdf MMOS Rev. 04 - Walkinstown Aparts – Engineering Services Report .pdf A Stage 1 SW Audit has not been provided however, one may not have been completed as it is not a requirement of South Dublin County Council.	KB to confirm whether or not a Stage 1 SW Audit was completed at Planning Stage and if so provide	As far as we are aware, no Stage 1 SW Audit was completed at Planning Stage.	Acceptable
2		a copy. KB to advise.	Site Investigations Ltd completed a site investigation in 2014. A copy of this report is attached.	Acceptable
3	undertaken? Further to the above, a permeable geotextile has been proposed to the tree pits. Although infiltration is encouraged for interception benefits, groundwater monitoring should be carried out to ensure that infiltration does not occur within 1m of the winter groundwater table.	KB to advise whether groundwater monitoring has taken place and confirm that infiltration does not occur within 1m of the winter groundwater table.	In the site investigation completed in 2014, the highest recorded groundwater level was approximately 3.30mbgl. This equates to an approximate OD level of 48.00mOD. In no case will the depth of the proposed SuDS elements including the tree pits be within 1.0m of this depth. Refer to KB Ref D1752-KB-XX-XX-DR-C-0004-SuDS Details & Sections_RevP2.	Acceptable subject to SDCC agreement.
4	Bearing the above in mind, it is not clear whether a permeable or impermeable membrane will be provided to the filter drains, swale and permeable paving areas.	KB to update drawings to identify what type of geotextile is proposed to each SuDS feature.	A permeable membrane will be provided as required, see updated details provided on KB Ref D1752-KB-XX-XX-DR-C-0004-SuDS Details & Sections_RevP2.	Acceptable subject to SDCC agreement.
6	A typical detail for the filter drains or permeable paving have not been provided. It is not clear from the drainage layout, how run-off will be directed to the tree pits. Furthermore, the watermain is shown to run through each of the proposed tree pits which is against the IW COP and would suggest there may be a service clash.	KB to include in details drawing. KB to review and advise.	Refer to KB Ref D1752-KB-XX-XX-DR-C-0004-SuDS Details & Sections_RevP2 for filter drains and permeable paving details. Surface water flow arrows added to the drawings to indicate direction of flow towards tree pits, swales, permeable paving, etc. The watermain has been removed from underneath the tree pits. However, due to restrictions on the space available between the building line and the road both the foul and storm lines will be under the trees pits along Ballymount Road Lower. We are currently in discussions with IW about this. Refer to KB Ref D1752-KB-XX-XX-DR-C-0001-RC Storm Water & Foul Sewer Drainage Layout_RevP2, D1752-KB-XX-XX-DR-C-0004-SuDS Details & Sections_RevP2 and D1752-KB-XX-XX-DR-C-0005-Watermain Layout_RevP2.	Acceptable Acceptable subject to IW agreement.
7	Gullies are shown to discharge directly to the piped network, suggesting that no interception takes place at these locations.	KB to review and update as appropriate.	All gullies are to discharge to tree pits, swales or permeable pavin, as shown on KB Ref D1752-KB-XX-XX-DR-C-0001-RC Storm Water & Foul Sewer Drainage Lavout RevP2.	See Note 14
8	S4 (2) of the Kavanagh Burke Drainage Report calculates a total interception volume requirement of 38.9m3 based on 5mm interception across the whole site. S 4 (4) notes that this volume will be		To comply with the concept of interception, runoff from all areas pass through at least one SuDS measure, as shown on KB Ref D1752-KB-XX-XX-DR-C-0001-RC Storm Water & Foul Sewer Drainage Layout_RevP2.	Acceptable subject to compliance with Table 24.6
9	The site area is stated to be 0.903 Ha but just 0.821 ha appears to have been modelled in the Flow calculations. Has a reduced run-off factor been applied to the green areas? If so the designer should consider increasing the Cv values to 1.0 to avoid "double counting" the reduction factors.	KB to review and advise.	The 0.154ha public landscaping area is modelled as green area and a 30% permeability factor is applied. Thus, it is reduced to an equivalent contributing area of 0.30 x 0.154ha = 0.046ha. The highest assumed Cv value, the winter Cv, is 0.84. The lost area due to Flow applying this factor to the green area is (1-0.84) x 0.046ha = 0.008ha. On the other hand, 0.350ha of pervious areas considered impermeable, meaning that (1-0.30) x 0.350ha = 0.245ha that could be subtracted are not. This value compensates the lost area and calculations remain conservative. A table summarizing the water attenuation calculations is displayed on the drainage report.	Acceptable subject to SDCC agreement (See Note 15)
10	The drainage layout drawing states that 599m3 is provided in the attenuation tanks but a volume of 614m3 has been provided within the model. While the simulation results would suggest that a volume of 599m3 is likely to be sufficient, the model should be updated to reflect the actual site proposals to ensure compliance.		Attenuation volume calculation is show on KB Ref. D1752-KB-XX-XX-DR-C-0002-RC Tank, Trench & Manhole Details_RevP2. The storage volume figures in the Flow model were adjusted to provide a volume of 599m3, which matches the one indicated on the drawing.	Acceptable (Note: Updated Flow calculations have not been provided)
11	The Planning drawings proposed StormTech attenuation structures but the tender drawings propose RC tanks. Typically RC tanks should only be used where no other solution exists and they do not provide any water quality benefits, whereas the Isolator Row in the StormTech units provides some benefits.		The reason the RC attenuation tanks are proposed instead of the StormTech attenuation system are as follows: 1) Interception storage volume is provided throughout the diverse SuDS features proposed across the site, thus on-site infiltration is required through the base of the tanks. 2) All volumes generated by 1 in 100-year storms of all durations is now catered for by the RC attenuation tank. Therefore, the required attenuation volume has increased. To avoid interfering with structural foundations a concrete tank has been adopted.	Acceptable subject to SDCC agreement.

Item No.	JBA Review Comment	Comment/Clarification Request/Suggested Mitigation	Response from Client/Client Representative
12	The Planning drawings show a sump pump and rising main arrangement for exceedance events but these have not been included in the tender drawings. How will exceedance flows be managed?	KB to advise.	Exceedance flows will be managed within the SuDS Management Train located along the north-east site boundary, constituted main drains. As indicated, all flows are directed away from the building footprint, and no flow will run onto the undercroft carpark. Temporary flood storage is checked and provided where needed, as integrated part of the attenuation system, for 100-year return e Strategic Drainage Study" (GDSDS) requirements.
13	Standard drainage details, such as gullies, manhole construction, pipe bedding etc. have not been provided.	KB to provide all tender stage drainage drawings.	Pipe bedding and manhole construction details provided onKB Ref. D1752-KB-XX-XX-DR-C-0002-RC Tank, Trench & Manhole Details_ Gullies details shown on KB Ref D1752-KB-XX-XX-DR-C-0004-SuDS Details & Sections_RevP2.
	29/11/2022 Reference Documents • D1752-KB-XX-XX-DR-C-0001-Drainage & Watermain Layout_RevP2.pdf • D1752-KB-XX-XX-DR-C-0002-Attenuation Tank Details_RevP2.pdf • D1752-KB-XX-XX-DR-C-0003-SuDS Layout_RevP2.pdf • D1752-KB-XX-XX-DR-C-0004-SuDS Details_RevP2.pdf • D1752-KB-XX-XX-DR-C-0005-Watermain Layout_RevP2.pdf • Site-Investigations-Reportpdf	29/11/2022	
14	Some gullies are still shown to discharge directly to the piped network without first passing through any SuDS feature. E.g. upstream of manhole SW11	KB to review and amend as necessary.	The gullies upstream of the manhole SW11 are under the podium and only for the small amount of water that will run off the cars as carpark. It is not possible to run these gullies to a suds feature due to there location.
15	Although it is not clear where the figure of 0.35 Ha pervious areas, considered permeable, has come from it seems as though 100% runoff has been assumed from impermeable surfaces. Therefore, the application of Cv factors is unlikely to have a significant impact on the volumes.	No response required.	N/A
16	Pipe bedding and manhole construction details are not shown on drawing DR-C-0002. Longitudinal sections should also be included in the tender package.	KB to ensure that all details required for tender are included in the tender package.	Details were shown on drawing DR-C-0001. See additional details shown on drawing DR-C-0013 & 0014. Longitudinal sections shown
17	How is runoff from the podium area collected and intercepted? Drawing DR-C-0003 shows podium landscaping but it is not clear whether these will collect run-off, and if so how they will discharge it back to the system.	KB to clarify how runoff from the podium will be collected, intercepted and discharged back to the	Attached is the landscape drawing for the podium. Approximately 45% of the podium is made up of soft landscaping. In so far as pos hard landscaping will be directed towards the soft landscaping. Rainwater outlets will be position in the podium slab to pick up any o landscaping. This has also been indicated on the updated drawing DR-C-003-Rev P3.

	Acceptable / Not Acceptable
inly by swales and French	
events as per "Great Dublin	Acceptable
s_RevP2.	See Note 16
as they are entering the	Acceptable subject to SDCC agreement.
	N/A
vn on drg DR-C-00010	Acceptable
ossible the run-off from the y over flow from the soft	Acceptable

Appendix 2

Uisce Éireann Connection Agreement Documents Ref. CDS1900177002

Declan O' Sullivan Kavanagh Burke Unit F3 Calmount Park Ballymount Dublin 12

CONNECTION OFFER

To: Daryl Skelly Walkinstown Montane Properties Limited Unit 51D Maynooth Business Campus Maynooth Kildare W23D343 Ireland

Ulsce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie

(the "Developer")

Our Ref: CDS1900177002

Self-Lay Connection Agreement – CHM Premises, Ballymount Road Lower, Dublin, South Dublin

Date: 24 May 2023

SUBJECT TO CONTRACT

Dear Applicant,

Outcome of your Connection Application - Summary

We have completed the review of your Connection Application.

Irish Water has reviewed your application for a Self-Lay connection(s) to the Network(s). Based upon the details provided by you, Irish Water can offer you a connection(s) for your Development in accordance with the terms of this Connection Offer.

Where can you find more information?

You can find more information about the terms of your Connection Offer in this **Connection Offer letter** and enclosures. Please read this Connection Offer letter and the <u>following</u> enclosed documents, in particular:

- General Conditions for Self-Lay Connections (Appendix 2)
- Special Conditions (Appendix 3)

If you have any queries in relation to this Connection Offer, please contact our Customer Service Department at:

Telephone: 1800 278 278 or +353 1 707 2828

Stlúrthóirí / Directors: Tony Keohane (Chairman), Niali Gleeson (CEO), Christopher Banks, Fred Barry, Gerard Britchfield, Liz Joyce, Patricia King, Eileen Maher, Cathy Mannion, Michael Walsh

Olfig Chláraithe / Registered Office: Teach Colvill, 24–26 Sráid Thalbóid, Balle Átha Cliath 1, D01 NP86 / Colvill House, 24–26 Talbot Street, Dublin 1 D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scalreanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhír Chláraithe in Éirinn / Registered in Ireland No.: 530363 Email: newconnections@water.ie

Web: www.water.ie/contact-us

Next Steps¹ to proceed with this Connection Offer:

- Sign and return the Letter of Acceptance (see attached)
- Pay the Connection Charge (see Section 3(a) below)
- Provide any required Self-Lay Surety (per 3(b) below, including a completed Deposit Agreement)
- Provide any Required Security (see Appendix 8)

You have 90 days from the date of this Connection Offer to accept the offer.

What to do after Acceptance of the Connection Offer?

- Submit a Commencement Notice (see General Condition 11.3)
- Arrange a Pre-Commencement Meeting (and provide a first draft of the Register of Premises Served) (see General Condition 11.3)

Prior to connection to the Network(s), you must²:

- <u>Complete</u> the Water & Wastewater Services Infrastructure in accordance with this Connection Agreement
- <u>Provide</u> all Final Documents
- <u>Provide</u> all required Deeds of Grant of Wayleaves and Easements (including for any Arterial Pipe(s) – see Appendix 3, Part 3 (if applicable)) (per General Condition 13)
- <u>Provide</u> a Register of Premises Serviced (per General Condition 18)

If you wish to proceed with this Connection Offer, please complete the Next Steps listed above.

Yours sincerely

Monne Massis

Yvonne Harris Head of Customer Operations

¹ The purpose of this list is to draw particular attention to the key deliverables in the Connection Agreement. Developers are required to adhere to all requirements specified in the Connection Agreement.

² See General Condition 11.15

Providing a connection between the:

Water Works and Wastewater Works (the "**Network(s)**")

AND

The development located at CHM Premises, Ballymount Road Lower, Dublin, South Dublin (the "Development", as further described below)

Following receipt of your application for a connection of your Development to the Network(s) (the "Connection Application", a copy of which is included in Appendix 1), Irish Water is pleased to offer you ("You" or the "Developer"), a Connection between the Network(s) and the Development, subject to and in accordance with the conditions set out in this Connection Offer(the "Connection Offer"), the General Conditions for Self-Lay Connections (the "General Conditions", copy attached in Appendix 2) and any Special Conditions pertaining to this connection (the "Special Conditions", as may be attached in Appendix 3).

1. Connection Agreement

We enclose a Letter of Acceptance for your consideration.

We would encourage You to read the entirety of this Connection Offer including the appendices hereto and, in particular, the General Conditions and the Special Conditions. If You are satisfied with these and wish to proceed, please:

- a) arrange for the Letter of Acceptance, duly executed by You, to be returned to Irish Water, PO Box 860, South City Delivery Office, Cork City marked for the attention of Yvonne Harris, Head of Customer Operations,
- b) arrange for payment of the Connection Charge in accordance with section 3(a) below;
- c) provide the required Self-Lay Surety (per 3(b) below);
- d) provide confirmation that any Required Security, as specified in Appendix 8 hereto, has been put in place.

You and Irish Water acknowledge that there shall be no intention to create any legally binding contract between You and Irish Water unless and until You have complied with the steps outlined at 1 (a) – (d) above. If, in the opinion of Irish Water, You have not fully complied with any of the steps outlined at 1 (a) – (d) above, no legally binding contract shall come into force between You and Irish Water.

Once You have fully complied with the steps outlined at 1 (a) – (d) above, the Connection Agreement shall become legally binding on You and Irish Water (to the extent that any of the steps outlined at 1 (a) – (d) occur on different days, the Connection Agreement shall commence on the <u>last date</u> on which <u>all</u> the steps have been fully complied with).

The **Connection Agreement** is comprised of this Connection Offer, the General Conditions, the Special Conditions and the remaining appendices hereto. In the event and to the extent that any conflict or inconsistency arises as between these documents, the following order of precedence shall apply:

i.Special Conditions ii.General Conditions for Self-Lay Connections iii.Connection Offer (and the remaining appendices hereto).

Irish Water's decision to make a Connection Offer to You is made in reliance on the information contained in and submitted with the Connection Application. If the information supplied is incorrect or found to be materially inaccurate in any way, Irish Water reserves the right to apply additional Connection Charges, to impose additional contract terms and/or take any steps in accordance with the General Conditions.

This Connection Offer is based on a high-level desk top analysis carried out by Irish Water on the feasibility of a connection for your Development. Once the Connection Offer has been accepted by You, Irish Water will begin a detailed design of the connection. If during the process of detailed design Irish Water, at its discretion, forms the opinion (acting reasonably) that either:

- A. a connection to your Development is not feasible or practicable or safe to complete; or
- B. a connection to your Development would involve the expenditure by Irish Water of monies in excess of that provided for by way of the Connection Charge,

then the Connection Agreement may be terminated by Irish Water by way of written notice to the Customer.

The Connection Agreement shall constitute the entire agreement between You and Irish Water.

Any reference in this Connection Offer to an Appendix is to an appendix to this Connection Offer.

The relevant Local Authority referred to in the General Conditions is: Sth Dublin County Council

2. Validity of Connection Offer

You have 90 days from the date of this Connection Offer to comply with the steps outlined at 1 (a) - (d) above in order to <u>validly accept</u> this Connection Offer. Thereafter, the Connection Offer shall lapse unless otherwise agreed in writing by Irish Water.

3. Connection Charge & Self-Lay Surety

The Connection Charge(s) shall be determined in accordance with Irish Water's Connection Charging Policy as set out in the Water Charges Plan (which can be found at <u>www.water.ie/connections</u>)

(a) Connection Charge

The Water Connection Charge is €297,674.00 The Wastewater Connection Charge is €580,209.00 The Connection Charge is €877,883.00 (the "**Connection Charge**"); a breakdown of the Connection Charge is set out in Appendix 4.

Payment of the **Connection Charge** can be made by:

- a. Cheque, made payable to "Irish Water" or
- b. Money Transfer, by EFT to the following bank account:

Allied Irish Bank, 40/41 Westmoreland Street, Dublin 2, Ireland

Account Name	BIC	IBAN
IW AR-EFT	AIBKIE2D	IE29 AIBK 9333 8464 3085 94

Please note that You must quote the Irish Water reference number specified above in any communications and when making payment (*see 'Our Reference' on the first page of this letter*). The Connection Charge will only be deemed paid when funds have cleared in Irish Water's bank account.

(b) Self-Lay Surety

In addition to the Connection Charge, You will also be obliged to provide Irish Water with a Self-Lay Surety in the amount of €0.00 (the "**Self-Lay Surety**"); a breakdown of the Self-Lay Surety is set out in Appendix 4. The Self-Lay Surety can be made in the form of a cash bond (Please see Deposit Agreement in Appendix 8) or, alternatively, in any of the forms outlined in Irish Water's Financial Security Policy (available at <u>www.water.ie/connections</u>).Please refer to General Conditions 10 & 11 for further information in respect of the Self-Lay Surety.

Payment of the Self-Lay Surety can be made by:

- a. A separate Cheque, made payable to "Irish Water" or
- b. Money Transfer, by EFT to the following bank account:

Allied Irish Bank, 40/41 Westmoreland Street, Dublin 2, Ireland

Account Name	BIC	IBAN
IW AR-EFT	AIBKIE2D	IE29 AIBK 9333 8464 3085 94

Please note that You must quote the Irish Water reference number specified above in any communications and when making payment (*see 'Our Reference' on the first page of this letter*). The Self-Lay Surety will only be deemed paid when funds have cleared in Irish Water's bank account.

4. Queries

If You have any queries in relation to the payment of the Connection Charge/Self-Lay Surety or otherwise, please contact Irish Water Customer Service Department:

Telephone:	1800 278 278 or +353 1 707 2828
Email:	newconnections@water.ie
Web:	www.water.ie/contact-us

5. Disputes

Any dispute in respect of the terms of this Connection Offer (including in relation to the Estimate of Connection Costs) may, upon your application, be referred to the Irish Water complaints process. Details of the Irish Water Complaints Process are available on the Irish Water website.

Once a legally binding Connection Agreement is entered into, all disputes in relation to your agreement with Irish Water shall be resolved pursuant to General Condition 36.

6. Next Steps

Accept the Offer: Once You have complied with the steps outlined at 1 (a) - (d) above, You will receive a receipt of payment and Irish Water or its agent will contact You in accordance with the General Conditions.

Submit Your Commencement Notice at least fourteen (14) days in advance of commencement of the Self-Lay Works – email <u>developerscheduling@water.ie</u> (see General Condition 11.3.1).

Arrange a Pre-Construction Site Meeting with Irish Water – email <u>developerscheduling@water.ie</u>, giving at least ten (10) days' notice (see General Condition 11.3.2).

Letter of Acceptance (This copy to be returned to Irish Water duly completed) Irish Water PO Box 860 South City Delivery Office

Cork City

I/We refer to the Connection Offer dated 24/05/2023. I/We confirm that I/we have read and understood the Connection Offer and the Appendices attached to the Connection Offer comprising the following:

- **Connection Application** Appendix 1
- General Conditions for Self-Lay Connection Appendix 2
- **Special Conditions** Appendix 3
- **Connection Charge Summary** Appendix 4
- Specification Appendix 5
- Codes of Practice and Standard Details Appendix 6
- Forms of Deed of Grant Appendix 7
- Required Security (as applicable) 8 xibneqqA
- **Quality Assurance Regime** 9 Appendix
- Appendix 10 Register of Premises Serviced

Note: The documentation contained in Appendix 6 and Appendix 9 are included in the Memory Stick accompanying the Connection Offer. By accepting this letter, the Developer acknowledges and agrees that he/she has accessed the said Memory Stick and read and understood the contents thereof and that he/she acknowledges that these documents form part of the Connection Offer.

I/We also confirm that I/we will complete the Register of Premises Serviced (contained in Appendix 10) and provide it to Irish Water at the required intervals.

I/We acknowledge that the Connection Agreement is formed by acceptance of the Connection Offer, which consists of the documents set out above, and I/we accept Irish Water's Connection Offer for connection to the Network(s) specified in the Connection Offer on the terms and conditions set out therein.

I/we have read, understood, accept and agree to comply in full with the terms of the Connection Offer dated [24/05/2023] and all documents forming part of the Connection Agreement.

I/we further understand and acknowledge that there shall be no intention to create any legally binding contract between me/us and Irish Water unless and until I/we have:

- a) completed and returned this Letter of Acceptance;
- b) paid the Connection Charge;
- c) provided the required Self-Lay Surety. The Self-Lay Surety can be made in the form of a cash bond or, alternatively, in any of the forms outlined in Irish Water's Financial Security Policy (available at <u>www.water.ie/connections)</u>.;
- d) provided confirmation any Required Security, as specified in Appendix 8 of the Connection Offer, has been put in place.

I/we have made payment for Connection Reference CDS1900177002 via

Electronic Funds Transfer EFT

I/we have made Self-Lay Surety payment for Connection Reference CDS1900177002 via

Electronic Funds Transfer EFT

I/we have completed any ancillary agreement documents required under the Irish Water Financial Security Policy in connection with the Self-Lay Surety □

CDS1900177002

Developer Name:

WALKINSTOWN MONTANE PROPERTIES LIMITED (Company No. 718025)

Developer Address:

UNIT J1D, MAYNOOTH BUSINESS CAMPUS, MAYNOOTH, KILDARE, W23 D343, IRELAND

Developer Reference:

Developer Site Address

CHM Premises, Ballymount Road Lower, Dublin, South Dublin

Developer's signature:

For and on behalf of:

Walkinstown Montane Propenties BLOCK letters: DARYL SKELLY

Print full name of Developer in BLOCK letters:

Date: 18/9/2023

Your water services bill

000007 IW01NNIA I6ZS358A 9311313937

WALKINSTOWN MONTANE PROPERTIES LIMITED C/O DARYL SKELLY Unit 51D Maynooth Business Campus Maynooth Kildare Supply address

CHM PREMISES BALLYMOUNT ROAD LOWER DUBLIN

Bill summary	Amount	
Balance brought forward from last bill	€	0.00
Less total payments since last bill	€	-877883.00
Add total charges for this bill period	€	877883.00
Balance	€	0.00

Bill date	13/10/2023	
Account	2718001183	

Bill details

Description		Amount
Wastewater connection charge	€	580209.00
Water connection charge	€	297674.00
Total charges for this bill period	€	877883.00

Payments made

Payment date	Amount	
22/09/2023	€	-877883.0 0
Total payments	€	-877883.0 0